【BZOJ5100】[POI2018]Plan metra 构造
【BZOJ5100】[POI2018]Plan metra
Description
Input
Output
Sample Input
6 6 2 2 1
5 3 5 1 4
Sample Output
1 5 2
5 7 1
5 2 4
7 3 3
1 4 2
1 6 1
题解:如果我们已经确定了点1到点n的距离,那么我们就可以将1到n这条路拿出来,然后其他点都想挂链一样挂到这条路径上即可。即:
如果1到n的长度是m,我们将所有d1-dn相同的点放到一起,那么对于每组d1-dn相同的点,要么|d1-dn|=m,要么d1+dn的最小值=m。所以用数组记录一下即可。
输出方案的时候将所有d1+dn=m的点排个序即可。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int N=500010;
const int M=1000010;
int n,m,tot,cnt;
int d1[N],d2[N],s1[M<<1],s2[M<<1],p[M],mn[M<<1],pa[N],pb[N],pc[N];
inline char nc()
{
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int rd()
{
int ret=0,f=1; char gc=nc();
while(!isdigit(gc)) {if(gc=='-') f=-f; gc=nc();}
while(isdigit(gc)) ret=ret*10+(gc^'0'),gc=nc();
return ret*f;
}
inline int abs(int x) {return x>0?x:-x;}
inline bool check(int x)
{
if(((x>=M||x<=-M)?0:(s1[M+x]+s1[M-x]))+s2[x]==n-2)
{
m=x;
return 1;
}
return 0;
}
inline void add(int a,int b,int c)
{
pa[++cnt]=a,pb[cnt]=b,pc[cnt]=c;
}
int main()
{
n=rd();
if(n==2)
{
printf("TAK\n1 2 1");
return 0;
}
register int i,last;
for(i=2;i<n;i++) d1[i]=rd();
for(i=2;i<n;i++)
{
d2[i]=rd();
int &t=mn[d2[i]-d1[i]+M];
if(!t||d1[t]+d2[t]>d1[i]+d2[i]) t=i;
s1[d2[i]-d1[i]+M]++;
}
for(i=2;i<n;i++) if(i==mn[d2[i]-d1[i]+M]) s2[d1[i]+d2[i]]+=s1[d2[i]-d1[i]+M];
for(i=2;i<n;i++) if(check(abs(d2[i]-d1[i]))||check(d1[i]+d2[i])) break;
if(!m)
{
puts("NIE");
return 0;
}
for(i=2;i<n;i++)
{
if(d2[i]-d1[i]==m) add(i,1,d1[i]);
else if(d1[i]-d2[i]==m) add(i,n,d2[i]);
else if(i==mn[d2[i]-d1[i]+M]) p[d1[i]]=i;
else
{
int t=mn[d2[i]-d1[i]+M];
add(i,t,(d1[i]+d2[i]-d1[t]-d2[t])>>1);
}
}
p[m]=n,d1[n]=m;
for(last=i=1;i<=m;i++) if(p[i]) add(last,p[i],d1[p[i]]-d1[last]),last=p[i];
for(i=1;i<n;i++) if(pc[i]<=0)
{
puts("NIE");
return 0;
}
puts("TAK");
for(i=1;i<n;i++) printf("%d %d %d\n",pa[i],pb[i],pc[i]);
return 0;
}//6 2 5 4 8 4 1 6 4
【BZOJ5100】[POI2018]Plan metra 构造的更多相关文章
- bzoj5100 [POI2018]Plan metra 构造
5100: [POI2018]Plan metra Time Limit: 40 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 189 Sol ...
- bzoj千题计划249:bzoj5100: [POI2018]Plan metra
http://www.lydsy.com/JudgeOnline/problem.php?id=5100 1.找到d1[i]+dn[i] 最小的点,作为1到n链上的点 2.令链长为D,若abs(d1[ ...
- BZOJ5100 : [POI2018]Plan metra
若$1$到$n$之间没有其它点,则$1$到$n$的距离为任意一点到它们距离的差值,按照距离关系判断每个点是挂在$1$上还是挂在$n$上即可. 否则$1$到$n$的距离只可能为任意一点到它们距离和的最小 ...
- [POI2018]Plan metra
题目大意: 一棵$n(n\le5\times10^5)$个结点的树,每条边的边权均为正整数,告诉你$2\sim n-1$号结点到$1$号点和$n$号点的距离$d1[i]$和$d2[i]$.求是否存在这 ...
- 题解【洛谷P5959】[POI2018]Plan metra
题面 一道比较神仙的构造题. 首先确定 \(1\) 到 \(n\) 的路径长度,不妨设其长为 \(m\) . 通过观察发现,\(m\) 就是 \(\min_{1<i<n}\{dist_{1 ...
- [POI 2018] Plan Metra
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=5100 [算法] 首先分两类考虑 : 1. 1 -> N的路径不经过其它节点 , ...
- POI2018
[BZOJ5099][POI2018]Pionek(极角排序+two pointers) 几个不会严谨证明的结论: 1.将所有向量按极角排序,则答案集合一定是连续的一段. 当答案方向确定时,则一个向量 ...
- BZOJ5100 POI2018Plan metra(构造)
容易发现要么1和n直接相连,要么两点距离即为所有dx,1+dx,n的最小值.若为前者,需要满足所有|d1-dn|都相等,挂两棵菊花即可.若为后者,将所有满足dx,1+dx,n=d1,n的挂成一条链,其 ...
- HDU 4671 Backup Plan (2013多校7 1006题 构造)
Backup Plan Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total ...
随机推荐
- 运行带distance field的Hiero
从http://libgdx.badlogicgames.com/releases/下载zip包并解压,切换到解压后的目录,执行: java -cp gdx.jar;gdx-natives.jar;g ...
- MapReduce调度与执行原理系列文章
转自:http://blog.csdn.net/jaytalent?viewmode=contents MapReduce调度与执行原理系列文章 一.MapReduce调度与执行原理之作业提交 二.M ...
- 象“[]”、“.”、“->”这类操作符前后不加空格
象“[]”.“.”.“->”这类操作符前后不加空格. #include <iostream> #include <process.h> #include<stdio ...
- linux -- gedit快捷键
Shortcuts for tabs:Ctrl + Alt + PageDown Switches to the next tab to the left.Ctrl + Alt + PageD ...
- 使用PHP生成和获取XML格式数据
1.php生成xml
- linux(十一)之初始化文件
前面写了很多linux的知识,其实很多都是命令的,所以要去多多的练习才能学的更好,加油为了好工作. 要么现在懒惰,未来讨饭.要么现在努力,未来惬意. 一.初始化文件概述 1.1.概述 系统初始化文件是 ...
- Linux shell 学习
·详细介绍Linux shell脚本基础学习(一) ·详细介绍Linux shell脚本基础学习(二) ·详细介绍Linux shell脚本基础学习(三) ·详细介绍Linux shell脚本基础学习 ...
- 基于Bootstrap使用jQuery实现输入框组input-group的添加与删除-改进版
上一次说到了基于Bootstrap使用jQuery实现输入框组input-group的添加与删除 ,初始状态下只有一个输入框组,可以通过点击输入框组的右侧“+”(或自定义的文字)可以在原输入框组的下面 ...
- 第一章 Spring.Net介绍
1.1 概述 在Java社区中Spring经历的长时间的考验,已经是一套很成熟稳定的框架.而Spring.Net 的前身是 Java版的Spring.Spring.Net是以Java版的Spring框 ...
- Java精选笔记_Tomcat开发Web站点
Tomcat开发Web站点 Web开发的相关知识 B/S架构和C/S架构 C/S架构是Client/Server的简写,也就是客户机/服务器端的交互.常见应用 : QQ. 迅雷. 360. 旺旺等 B ...