题目大意

给定 $n$($1\le n\le 1000$)个正整数 $a_1, a_2, \dots, a_n$($a_i \le 10^{12}$),令 $s$ 为这 $n$ 个数之和。求
$$
\frac{s! } {\prod\limits_{1\le i\le n} a_i !} \bmod 10
$$

解法

中国剩余定理。

设上式中左边的商为 $x$,先分别求出 $x \bmod 2$ 和 $x\bmod 5$, 再利用中国剩余定理就可求得答案。

这个问题归结为:
对于素数 $p$ 和正整数 $n$,将 $n!$ 写成 $n! = ap^{k}$,且 $p$ 不是 $a$ 的因子。求 $a$ 和 $k$ 。

不难发现:
设 $n$ 的 $p$-进制展开式为
$$ n = b_0 + b_1 p + b_2 p^2 + \dots + b_r p^r \qquad ( 0 \le b_i \in \mathbb{Z} < p, b_r > 0) $$

则有
\begin{align}
k & = [n/p] + [n/p^2] + [n/p^3] + \dots + [n/p^r] \\
a & \equiv (p-1)!^{k} b_0! b_1! \dots b_r! \pmod{p} \label{Eq:2}
\end{align}

其中 $[x]$ 表示不超过 $x$ 的最大整数。
(令 $B = b_0 + b_1 + ... + b_r$,不难证明,$k$ 还可以写成 $k = \frac{n - B}{p-1}$)

根据 Wilson 定理,\eqref{Eq:2} 可写成
\begin{equation}
a \equiv (-1)^{k} b_0! b_1! \dots b_r ! \pmod{p}
\end{equation}

算法的复杂度为 $O(p + \log_p n)$ 。

从这个问题中积累的新模型
一、$\frac{A}{B}\bmod p$($B$ 能整除 $A$ 且 $p$ 是素数)的解法。
二、$n! \bmod p$($p$ 是素数) 的解法。


下面考虑:模数不是 $10$ 而是 $20$ 的情况下,此题如何求解。

仍循旧思路,采用中国剩余定理,我们需要求出 $x \bmod 4$;按旧办法求当然是可以的。注意:由于要预处理出 $0$ 到 $p-1$ 的阶乘,所以(对于旧思路)能否用 Wilson 定理并不影响复杂度。

如果模数的某个素因子的次数 $k$ 很高,求 $x \bmod p^k$ 的复杂度 $O(p^k + \log_{p^k} n)$ 就不能容忍了。很自然地,我们会考虑 $x\bmod p$ 与 $x\bmod p^k$ 之间的关系。
(留坑)

hihoCoder #1639 图书馆的更多相关文章

  1. Hihocder 1639 : 图书馆 (组合数+唯一分解 求最后一位)(妙)

    给定n,(n<=10^3),然后输入n的数a[i],(a[i]<=1e10),求ans=(a1+a2+a3...an)! / (a1!*a2!*a3!...an!) 的结果的最一位数. 适 ...

  2. hihoCoder 1383 : The Book List(书目表)

    hihoCoder #1383 : The Book List(书目表) 时间限制:1000ms 单点时限:1000ms 内存限制:256MB Description - 题目描述 The histo ...

  3. hihocoder -1121-二分图的判定

    hihocoder -1121-二分图的判定 1121 : 二分图一•二分图判定 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 大家好,我是小Hi和小Ho的小伙伴Net ...

  4. Hihocoder 太阁最新面经算法竞赛18

    Hihocoder 太阁最新面经算法竞赛18 source: https://hihocoder.com/contest/hihointerview27/problems 题目1 : Big Plus ...

  5. hihoCoder太阁最新面经算法竞赛15

    hihoCoder太阁最新面经算法竞赛15 Link: http://hihocoder.com/contest/hihointerview24 题目1 : Boarding Passes 时间限制: ...

  6. 【hihoCoder 1454】【hiho挑战赛25】【坑】Rikka with Tree II

    http://hihocoder.com/problemset/problem/1454 调了好长时间,谜之WA... 等我以后学好dp再来看为什么吧,先弃坑(╯‵□′)╯︵┻━┻ #include& ...

  7. 【hihocoder#1413】Rikka with String 后缀自动机 + 差分

    搞了一上午+接近一下午这个题,然后被屠了个稀烂,默默仰慕一晚上学会SAM的以及半天4道SAM的hxy大爷. 题目链接:http://hihocoder.com/problemset/problem/1 ...

  8. 【hihoCoder】1148:2月29日

    问题:http://hihocoder.com/problemset/problem/1148 给定两个日期,计算这两个日期之间有多少个2月29日(包括起始日期). 思路: 1. 将问题转换成求两个日 ...

  9. 【hihoCoder】1288 : Font Size

    题目:http://hihocoder.com/problemset/problem/1288 手机屏幕大小为 W(宽) * H(长),一篇文章有N段,每段有ai个字,要求使得该文章占用的页数不超过P ...

随机推荐

  1. bootstrap的Alerts中 可以放置p标签 设置 align="center" 用来设置文本居中

    效果

  2. 【MYSQL用户创建报错】ERROR 1396 (HY000): Operation CREATE USER failed for 'user1'@'%'

    原文参考自:http://blog.csdn.net/u011575570/article/details/51438841 1.创建用户的时候报错ERROR 1396 (HY000): Operat ...

  3. Karma与TSLint

    TSLint TSLint是一个可扩展的静态分析工具,用于检查TypeScript代码的可读性,可维护性和功能性错误.收到现代编辑和构建系统的广泛支持,并且可以使用您自己的路由,配置和格式化. 安装 ...

  4. 利用webbrowser自动查取地点坐标

    概述 有时候我们需要去查询某些地点的坐标,那么我们可以用百度提供的坐标拾取系统http://api.map.baidu.com/lbsapi/getpoint/index.html,但是会发现它只能一 ...

  5. Configure,Makefile.am, Makefile.in, Makefile文件

    一 软件安装关于 makefile文件问题 如果拿到的工程文件中,没有Makefile文件,而只有configure.in和Makefile.am文件,我们是不能够直接进行编译的,必须根据config ...

  6. Qt-QML-Canvas写个小小的闹钟

    先看下演示效果 大致过程 先绘制仪表盘,圆圈和刻度 剩下再绘制三个指针 最后在绘制上面的电子时钟 下面写源代码 import QtQuick 2.0 Rectangle { id:root ancho ...

  7. 袋鼠云研发手记 | 开源·数栈-扩展FlinkSQL实现流与维表的join

    作为一家创新驱动的科技公司,袋鼠云每年研发投入达数千万,公司80%员工都是技术人员,袋鼠云产品家族包括企业级一站式数据中台PaaS数栈.交互式数据可视化大屏开发平台Easy[V]等产品也在迅速迭代.在 ...

  8. 剑指offer-二维数组中的查找01

    题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...

  9. html、JSP运行原理

    HTML运行原理 1.本地运行      所谓本地运行就是直接用 浏览器打开 2.远程访问的原理示意图: 何为协议?计算机互相通信(网络)的规则.常见的协议有 http .smtp. ftp.pop等 ...

  10. 2018软工实践—Alpha冲刺(3)

    队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 协助后端界面的开发 搭建项目运行的服务器环境 ...