import tensorflow as tf
import numpy
import matplotlib.pyplot as plt
#from sklearn.model_selection import train_test_split
rng = numpy.random # Parameters
learning_rate = 0.01
training_epochs = 2000
display_step = 50 # Training Data
train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
n_samples = train_X.shape[0] # tf Graph Input
X = tf.placeholder("float")
Y = tf.placeholder("float") # Create Model # Set model weights
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias") # Construct a linear model
activation = tf.add(tf.mul(X, W), b) # Minimize the squared errors
cost = tf.reduce_sum(tf.pow(activation-Y, 2))/(2*n_samples) #L2 loss #reduce_sum:把里面的平方求和
# pow(x,y):这个是表示x的y次幂。 optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #Gradient descent # Initializing the variables
init = tf.initialize_all_variables() # Launch the graph
with tf.Session() as sess:
sess.run(init) # Fit all training data
for epoch in range(training_epochs):
for (x, y) in zip(train_X, train_Y):
sess.run(optimizer, feed_dict={X: x, Y: y})
#zip:对应的元素打包成一个个元组
#Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", \
"{:.9f}".format(sess.run(cost, feed_dict={X: train_X, Y:train_Y})), \
"W=", sess.run(W), "b=", sess.run(b)) print("Optimization Finished!")
print("cost=", sess.run(cost, feed_dict={X: train_X, Y: train_Y}), \
"W=", sess.run(W), "b=", sess.run(b)) #Graphic display
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()

博客存档TensorFlow入门一 1.4编程练习的更多相关文章

  1. Hexo结合Stun静态博客搭建从入门到入土

    摘要 安装npm,安装hexo相关依赖,安装主题stun 修改hexo配置,修改stun配置,部署到github,gitee实现静态访问 给博客加上全局搜索,访问量统计 hexo博客编写模板 tips ...

  2. 关于这个博客以及C++入门该懂的一些东西

    给三牧中学c++入门的同学们看的博客. 大概是入门一类的?说不定会写点自己的结题报告. 写的不好/写错了别怪我,蒟蒻瑟瑟发抖. 天哪要开始写入门了我好慌那么接下来是编译器连接. (本蒟蒻喜欢用DEV ...

  3. Caffe & Caffe2入门博客存档

    caffe2 教程入门(python版) https://www.jianshu.com/p/5c0fd1c9fef9?from=timeline caffe入门学习 https://blog.csd ...

  4. 博客六--Tensorflow卷积神经网络的自主搭建

    本人较懒也很忙,所以就不重复工作.连接我的开源中国博客查询:https://my.oschina.net/u/3770644/blog/3042523

  5. 一篇博客带你入门Flask

    一. Python 现阶段三大主流Web框架 Django Tornado Flask 对比 1.Django 主要特点是大而全,集成了很多组件,例如: Models Admin Form 等等, 不 ...

  6. 博客三--tensorflow的队列及线程基本操作

    连接我的开源中国账号:https://my.oschina.net/u/3770644/blog/3036960查询

  7. 【代理是什么?】nginx快速入门+反向代理hexo个人博客

    @ 目录 前言 本文说明 请大家务必查看 工作原理 正向代理 反向代理 环境准备 详细版 入门:搭建步骤 配置阿里云epel源: yum安装nginx: 启动nginx: 配置default.conf ...

  8. 收藏的博客 -- Qt/C++学习

    Qt Creator环境: 使用Qt Creator作为Linux IDE,代替Vim:实现两台Linux电脑远程部署和调试(一台电脑有桌面系统,一台电脑无桌面系统) 使用Qt Creator作为Li ...

  9. 文顶顶iOS开发博客链接整理及部分项目源代码下载

    文顶顶iOS开发博客链接整理及部分项目源代码下载   网上的iOS开发的教程很多,但是像cnblogs博主文顶顶的博客这样内容图文并茂,代码齐全,示例经典,原理也有阐述,覆盖面宽广,自成系统的系列教程 ...

随机推荐

  1. Redis-SDS

    Redis 的简单动态字符串 (simple dynamic string,SDS) SDS的结构: struct sdshdr { int len;  //保存的字符串长度. int free;  ...

  2. LeetCode GrayCode

    class Solution { public: vector<int> grayCode(int n) { vector<int> res; res.push_back(); ...

  3. MyEclipse去除网上复制下来的代码带有的行号(使用正则表达式)

    一.正则表达式去除代码行号 作为开发人员,我们经常从网上复制一些代码,有些时候复制的代码前面是带有行号,如: MyEclipse本身自带有查找替换功能,并且支持正则表达式替换,使用正则替换就可以很容易 ...

  4. js 中concat()和slice()方法介绍

    1.concat() concat() 方法用于连接两个或多个数组. 该方法不会改变现有的数组,而仅仅会返回被连接数组的一个副本. <script type="text/javascr ...

  5. 用CSS3 & jQuery创建apple TV海报视差效果

    用CSS和jQuery来实现它,尽量看起来和原效果一样. 最终效果图 本教程里,我将使用CSS,HTML和jQuery来创建一个近似Apple TV视差效果,如果你正在阅读,我假设你对上述三种技术都有 ...

  6. 在PHP中使用加密技术

    Gpg4win 是一款基于 GPG 的非对称加密软件.非对称加密方式,简单理解就是用公钥加密文件,用私钥解密文件.如果你需要发送加密信息,首先获取接收者的公钥,然后利用该公钥加密后传递,对方利用对应的 ...

  7. unistd.h文件

    转载地址:http://baike.baidu.com/link?url=nEyMMFYevs4yoHgQUs2bcfd5WApHUKx0b1ervi7ulR09YhtqC4txmvL1Ce3FS8x ...

  8. Android 自定义简易的方向盘操作控件

    最近在做一款交互性较为复杂的APP,需要开发一个方向操作控件.最终用自定义控件做了一个简单的版本. 这里我准备了两张素材图,作为方向盘被点击和没被点击的背景图.下面看看自定义的Wheel类 publi ...

  9. zTree 学习笔记之(一)

    zTree 学习笔记之(一) 简介 zTree 是一个依靠 jQuery 实现的多功能 “树插件”.优异的性能.灵活的配置.多种功能的组合是 zTree 最大优点. 到底有哪些具体的优点,可以参见官网 ...

  10. 131.003 数据预处理之Dummy Variable & One-Hot Encoding

    @(131 - Machine Learning | 机器学习) Demo 直观来说就是有多少个状态就有多少比特,而且只有一个比特为1,其他全为0的一种码制 {sex:{male, female}}​ ...