Going Home

Description

On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters
a house. The task is complicated with the restriction that each house can accommodate only one little man. 



Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates
there is a little man on that point. 




You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

Input

There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both
N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.

Output

For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.

Sample Input

2 2
.m
H.
5 5
HH..m
.....
.....
.....
mm..H
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
0 0

Sample Output

2
10
28
————————————————————————————————————
题目的意思是给出一张图,H表示房子,m表示人,人只能上下左右移动一格且花费为1,问所有的人进入房子花费最少是多少?
思路:
方法一:最小费最大流。建图时将每个人和每个房子两两之间建边,流量为1花费为人与房的曼哈顿距离。再加一个源点与每个人建边流量为1花费为0,一个汇点与每个房子建边流量为1花费为0,求源点到汇点的最小花费即可。
方法二:二分图最大权匹配,根据距离关系建立二分图。KM算法解决
方法一:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <queue>
#include <vector>
#include <stack>
#include <set>
#include <map>
using namespace std;
const int MAXN=10000;
const int MAXM=100000;
const int INF=0x3f3f3f3f;
struct Edge{
int to,next,cap,flow,cost;
} edge[MAXM];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN];
int N;
struct point{
int x,y;
};
void init(int n)
{
N=n;
tol=0;
memset(head,-1,sizeof head);
}
void addedge(int u,int v,int cap,int cost)
{
edge[tol].to=v;
edge[tol].cap=cap;
edge[tol].flow=0;
edge[tol].cost=cost;
edge[tol].next=head[u];
head[u]=tol++;
edge[tol].to=u;
edge[tol].cap=0;
edge[tol].flow=0;
edge[tol].cost=-cost;
edge[tol].next=head[v];
head[v]=tol++;
} bool spfa(int s,int t)
{
queue<int>q;
for(int i=0;i<N;i++)
{
dis[i]=INF;
vis[i]=false;
pre[i]=-1;
}
dis[s]=0;
vis[s]=true;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=false;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(edge[i].cap>edge[i].flow&&dis[v]>dis[u]+edge[i].cost)
{
dis[v]=dis[u]+edge[i].cost;
pre[v]=i;
if(!vis[v])
{
vis[v]=true;
q.push(v);
}
}
}
}
if(pre[t]==-1)return false;
return true;
}
int MincostMaxflow(int s,int t)
{
int flow=0;
int cost=0;
while(spfa(s,t))
{
int Min=INF;
for(int i=pre[t];i!=-1;i=pre[edge[i^1].to])
{
if(Min>edge[i].cap-edge[i].flow)
Min=edge[i].cap-edge[i].flow;
}
for(int i=pre[t];i!=-1;i=pre[edge[i^1].to])
{
edge[i].flow+=Min;
edge[i^1].flow-=Min;
cost+=edge[i].cost*Min;
}
flow+=Min;
}
return cost;
} int main()
{
char mp[105][105];
int m,n;
while(~scanf("%d%d",&n,&m)&&(m||n))
{
point H[105],P[105];
int h=0,p=0;
for(int i=0;i<n;i++)
{
scanf("%s",&mp[i]);
for(int j=0;j<m;j++)
{
if(mp[i][j]=='H')
{
H[h].x=i;
H[h].y=j;
h++;
}
else if(mp[i][j]=='m')
{
P[p].x=i;
P[p].y=j;
p++;
}
}
}
init(p+h+2);
for(int i=0;i<h;i++)
for(int j=0;j<p;j++)
{
int c=fabs(H[i].x-P[j].x)+fabs(H[i].y-P[j].y);
addedge(i+1,h+j+1,1,c);
} for(int i=0;i<h;i++)
{
addedge(0,i+1,1,0);
}
for(int i=0;i<p;i++)
{
addedge(h+1+i,h+p+1,1,0);
}
printf("%d\n",MincostMaxflow(0,h+p+1)); }
}

方法二:

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>
using namespace std; #define LL long long
const int INF=0x3f3f3f3f;
const int MAXN = 505;
int g[MAXN][MAXN];
int lx[MAXN],ly[MAXN]; //顶标
int linky[MAXN];
int visx[MAXN],visy[MAXN];
int slack[MAXN];
char mp[MAXN][MAXN];
int nx,ny;
bool find(int x)
{
visx[x] = true;
for(int y = 0; y < ny; y++)
{
if(visy[y])
continue;
int t = lx[x] + ly[y] - g[x][y];
if(t==0)
{
visy[y] = true;
if(linky[y]==-1 || find(linky[y]))
{
linky[y] = x;
return true; //找到增广轨
}
}
else if(slack[y] > t)
slack[y] = t;
}
return false; //没有找到增广轨(说明顶点x没有对应的匹配,与完备匹配(相等子图的完备匹配)不符)
} int KM() //返回最优匹配的值
{
int i,j;
memset(linky,-1,sizeof(linky));
memset(ly,0,sizeof(ly));
for(i = 0; i < nx; i++)
for(j = 0,lx[i] = -INF; j < ny; j++)
lx[i] = max(lx[i],g[i][j]);
for(int x = 0; x < nx; x++)
{
for(i = 0; i < ny; i++)
slack[i] = INF;
while(true)
{
memset(visx,0,sizeof(visx));
memset(visy,0,sizeof(visy));
if(find(x)) //找到增广轨,退出
break;
int d = INF;
for(i = 0; i < ny; i++) //没找到,对l做调整(这会增加相等子图的边),重新找
{
if(!visy[i] && d > slack[i])
d = slack[i];
}
for(i = 0; i < nx; i++)
{
if(visx[i])
lx[i] -= d;
}
for(i = 0; i < ny; i++)
{
if(visy[i])
ly[i] += d;
else
slack[i] -= d;
}
}
}
int result = 0;
for(i = 0; i < ny; i++)
if(linky[i]>-1)
result += g[linky[i]][i];
return result;
} int main()
{
int n,m;
while(~scanf("%d%d",&n,&m)&&(n||m))
{
for(int i=0; i<n; i++)
{
scanf("%s",mp[i]);
}
int cnt=0;
int CNT=0;
memset(g,-INF,sizeof g);
for(int i=0; i<n; i++)
for(int j=0; j<m; j++)
{
if(mp[i][j]=='m')
{
int CNT=0;
for(int I=0; I<n; I++)
for(int J=0; J<m; J++)
{
if(mp[I][J]=='H')
{
g[cnt][CNT++]=-(abs(i-I)+abs(j-J));
}
}
cnt++;
} }
nx=ny=cnt;
printf("%d\n",-KM());
}
return 0;
}

POJ2195 Going Home (最小费最大流||二分图最大权匹配) 2017-02-12 12:14 131人阅读 评论(0) 收藏的更多相关文章

  1. c++ 字符串流 sstream(常用于格式转换) 分类: C/C++ 2014-11-08 17:20 150人阅读 评论(0) 收藏

    使用stringstream对象简化类型转换 C++标准库中的<sstream>提供了比ANSI C的<stdio.h>更高级的一些功能,即单纯性.类型安全和可扩展性.在本文中 ...

  2. HDU1045 Fire Net(DFS枚举||二分图匹配) 2016-07-24 13:23 99人阅读 评论(0) 收藏

    Fire Net Problem Description Suppose that we have a square city with straight streets. A map of a ci ...

  3. POJ1273&&Hdu1532 Drainage Ditches(最大流dinic) 2017-02-11 16:28 54人阅读 评论(0) 收藏

    Drainage Ditches Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  4. 二分图匹配(KM算法)n^4 分类: ACM TYPE 2014-10-04 11:36 88人阅读 评论(0) 收藏

    #include <iostream> #include<cstring> #include<cstdio> #include<cmath> #incl ...

  5. 二分图匹配(KM算法)n^3 分类: ACM TYPE 2014-10-01 21:46 98人阅读 评论(0) 收藏

    #include <iostream> #include<cstring> #include<cstdio> #include<cmath> const ...

  6. 二分图匹配 分类: ACM TYPE 2014-10-01 19:57 94人阅读 评论(0) 收藏

    #include<cstdio> #include<cstring> using namespace std; bool map[505][505]; int n, k; bo ...

  7. POJ2195 Going Home[费用流|二分图最大权匹配]

    Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22088   Accepted: 11155 Desc ...

  8. 【BZOJ 3308】 3308: 九月的咖啡店 (费用流|二分图最大权匹配)

    3308: 九月的咖啡店 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 244  Solved: 86 Description 深绘里在九份开了一家咖 ...

  9. [hdu1533]二分图最大权匹配 || 最小费用最大流

    题意:给一个n*m的地图,'m'表示人,'H'表示房子,求所有人都回到房子所走的距离之和的最小值(距离为曼哈顿距离). 思路:比较明显的二分图最大权匹配模型,将每个人向房子连一条边,边权为曼哈顿距离的 ...

随机推荐

  1. C++ 内连接与外连接 (转)

    啥叫内连接 外连接 我们知道编译的时候(假如编译器是VS),是以源文件cpp文件为单位,编译成一个个的obj文件,然后再通过链接器把不同的obj文件链接起来. 简单的说,如果一些变量或函数的定义是内连 ...

  2. 十一、jdk命令之Jstatd命令(Java Statistics Monitoring Daemon)远程的监控工具连接到本地的JVM执行命令

    目录 一.jdk工具之jps(JVM Process Status Tools)命令使用 二.jdk命令之javah命令(C Header and Stub File Generator) 三.jdk ...

  3. Mac上如何把图片中的文字转换成word/pdf文字

    如何把图片文字转换成word文字? - 知乎 https://www.zhihu.com/question/25488536 在 OneNote for Mac 中插入的圖片複製文字 - OneNot ...

  4. [转]MVC 分页

    本内容代码段抄自传智视频 /// <summary> /// 数据库分页 /// </summary> static List<dynamic> GetPageLi ...

  5. android基于adb的性能测试

    应用CPU.内存.点亮.流量等数据,是应用测试的重要性能指标.本次以UC浏览器为例. 当前UC测试中,每个正式版本都会专门做一轮性能测试,测试数据包括: 1小时内存数据 1小时CPU数据 24小时电量 ...

  6. thinkPHP volist标签循环输出多维数组

    <volist name="company" id="vo">{$vo.company_name}<volist name="vo[ ...

  7. HyberLedger Fabric学习(4)-chaincode学习(操作人员)

    参考:http://hyperledger-fabric.readthedocs.io/en/latest/chaincode4noah.html chaincode也能被称作“智能合约”,一般情况下 ...

  8. Oracle数据库备份与恢复的三种方法

    转自blueskys567原文Oracle数据库备份与恢复的三种方法, 2006-10. 有删改 Oracle数据库有三种标准的备份方法,它们分别是导出/导入(EXP/IMP).热备份和冷备份. 导出 ...

  9. leetcode28

    public class Solution { public int StrStr(string haystack, string needle) { return haystack.IndexOf( ...

  10. vb6 的关机代码

    Public Const SE_PRIVILEGE_ENABLED As Integer = &H2Public Const TOKEN_QUERY As Integer = &H8P ...