Going Home

Description

On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters
a house. The task is complicated with the restriction that each house can accommodate only one little man. 



Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates
there is a little man on that point. 




You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

Input

There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both
N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.

Output

For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.

Sample Input

2 2
.m
H.
5 5
HH..m
.....
.....
.....
mm..H
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
0 0

Sample Output

2
10
28
————————————————————————————————————
题目的意思是给出一张图,H表示房子,m表示人,人只能上下左右移动一格且花费为1,问所有的人进入房子花费最少是多少?
思路:
方法一:最小费最大流。建图时将每个人和每个房子两两之间建边,流量为1花费为人与房的曼哈顿距离。再加一个源点与每个人建边流量为1花费为0,一个汇点与每个房子建边流量为1花费为0,求源点到汇点的最小花费即可。
方法二:二分图最大权匹配,根据距离关系建立二分图。KM算法解决
方法一:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <queue>
#include <vector>
#include <stack>
#include <set>
#include <map>
using namespace std;
const int MAXN=10000;
const int MAXM=100000;
const int INF=0x3f3f3f3f;
struct Edge{
int to,next,cap,flow,cost;
} edge[MAXM];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN];
int N;
struct point{
int x,y;
};
void init(int n)
{
N=n;
tol=0;
memset(head,-1,sizeof head);
}
void addedge(int u,int v,int cap,int cost)
{
edge[tol].to=v;
edge[tol].cap=cap;
edge[tol].flow=0;
edge[tol].cost=cost;
edge[tol].next=head[u];
head[u]=tol++;
edge[tol].to=u;
edge[tol].cap=0;
edge[tol].flow=0;
edge[tol].cost=-cost;
edge[tol].next=head[v];
head[v]=tol++;
} bool spfa(int s,int t)
{
queue<int>q;
for(int i=0;i<N;i++)
{
dis[i]=INF;
vis[i]=false;
pre[i]=-1;
}
dis[s]=0;
vis[s]=true;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=false;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(edge[i].cap>edge[i].flow&&dis[v]>dis[u]+edge[i].cost)
{
dis[v]=dis[u]+edge[i].cost;
pre[v]=i;
if(!vis[v])
{
vis[v]=true;
q.push(v);
}
}
}
}
if(pre[t]==-1)return false;
return true;
}
int MincostMaxflow(int s,int t)
{
int flow=0;
int cost=0;
while(spfa(s,t))
{
int Min=INF;
for(int i=pre[t];i!=-1;i=pre[edge[i^1].to])
{
if(Min>edge[i].cap-edge[i].flow)
Min=edge[i].cap-edge[i].flow;
}
for(int i=pre[t];i!=-1;i=pre[edge[i^1].to])
{
edge[i].flow+=Min;
edge[i^1].flow-=Min;
cost+=edge[i].cost*Min;
}
flow+=Min;
}
return cost;
} int main()
{
char mp[105][105];
int m,n;
while(~scanf("%d%d",&n,&m)&&(m||n))
{
point H[105],P[105];
int h=0,p=0;
for(int i=0;i<n;i++)
{
scanf("%s",&mp[i]);
for(int j=0;j<m;j++)
{
if(mp[i][j]=='H')
{
H[h].x=i;
H[h].y=j;
h++;
}
else if(mp[i][j]=='m')
{
P[p].x=i;
P[p].y=j;
p++;
}
}
}
init(p+h+2);
for(int i=0;i<h;i++)
for(int j=0;j<p;j++)
{
int c=fabs(H[i].x-P[j].x)+fabs(H[i].y-P[j].y);
addedge(i+1,h+j+1,1,c);
} for(int i=0;i<h;i++)
{
addedge(0,i+1,1,0);
}
for(int i=0;i<p;i++)
{
addedge(h+1+i,h+p+1,1,0);
}
printf("%d\n",MincostMaxflow(0,h+p+1)); }
}

方法二:

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>
using namespace std; #define LL long long
const int INF=0x3f3f3f3f;
const int MAXN = 505;
int g[MAXN][MAXN];
int lx[MAXN],ly[MAXN]; //顶标
int linky[MAXN];
int visx[MAXN],visy[MAXN];
int slack[MAXN];
char mp[MAXN][MAXN];
int nx,ny;
bool find(int x)
{
visx[x] = true;
for(int y = 0; y < ny; y++)
{
if(visy[y])
continue;
int t = lx[x] + ly[y] - g[x][y];
if(t==0)
{
visy[y] = true;
if(linky[y]==-1 || find(linky[y]))
{
linky[y] = x;
return true; //找到增广轨
}
}
else if(slack[y] > t)
slack[y] = t;
}
return false; //没有找到增广轨(说明顶点x没有对应的匹配,与完备匹配(相等子图的完备匹配)不符)
} int KM() //返回最优匹配的值
{
int i,j;
memset(linky,-1,sizeof(linky));
memset(ly,0,sizeof(ly));
for(i = 0; i < nx; i++)
for(j = 0,lx[i] = -INF; j < ny; j++)
lx[i] = max(lx[i],g[i][j]);
for(int x = 0; x < nx; x++)
{
for(i = 0; i < ny; i++)
slack[i] = INF;
while(true)
{
memset(visx,0,sizeof(visx));
memset(visy,0,sizeof(visy));
if(find(x)) //找到增广轨,退出
break;
int d = INF;
for(i = 0; i < ny; i++) //没找到,对l做调整(这会增加相等子图的边),重新找
{
if(!visy[i] && d > slack[i])
d = slack[i];
}
for(i = 0; i < nx; i++)
{
if(visx[i])
lx[i] -= d;
}
for(i = 0; i < ny; i++)
{
if(visy[i])
ly[i] += d;
else
slack[i] -= d;
}
}
}
int result = 0;
for(i = 0; i < ny; i++)
if(linky[i]>-1)
result += g[linky[i]][i];
return result;
} int main()
{
int n,m;
while(~scanf("%d%d",&n,&m)&&(n||m))
{
for(int i=0; i<n; i++)
{
scanf("%s",mp[i]);
}
int cnt=0;
int CNT=0;
memset(g,-INF,sizeof g);
for(int i=0; i<n; i++)
for(int j=0; j<m; j++)
{
if(mp[i][j]=='m')
{
int CNT=0;
for(int I=0; I<n; I++)
for(int J=0; J<m; J++)
{
if(mp[I][J]=='H')
{
g[cnt][CNT++]=-(abs(i-I)+abs(j-J));
}
}
cnt++;
} }
nx=ny=cnt;
printf("%d\n",-KM());
}
return 0;
}

POJ2195 Going Home (最小费最大流||二分图最大权匹配) 2017-02-12 12:14 131人阅读 评论(0) 收藏的更多相关文章

  1. c++ 字符串流 sstream(常用于格式转换) 分类: C/C++ 2014-11-08 17:20 150人阅读 评论(0) 收藏

    使用stringstream对象简化类型转换 C++标准库中的<sstream>提供了比ANSI C的<stdio.h>更高级的一些功能,即单纯性.类型安全和可扩展性.在本文中 ...

  2. HDU1045 Fire Net(DFS枚举||二分图匹配) 2016-07-24 13:23 99人阅读 评论(0) 收藏

    Fire Net Problem Description Suppose that we have a square city with straight streets. A map of a ci ...

  3. POJ1273&&Hdu1532 Drainage Ditches(最大流dinic) 2017-02-11 16:28 54人阅读 评论(0) 收藏

    Drainage Ditches Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  4. 二分图匹配(KM算法)n^4 分类: ACM TYPE 2014-10-04 11:36 88人阅读 评论(0) 收藏

    #include <iostream> #include<cstring> #include<cstdio> #include<cmath> #incl ...

  5. 二分图匹配(KM算法)n^3 分类: ACM TYPE 2014-10-01 21:46 98人阅读 评论(0) 收藏

    #include <iostream> #include<cstring> #include<cstdio> #include<cmath> const ...

  6. 二分图匹配 分类: ACM TYPE 2014-10-01 19:57 94人阅读 评论(0) 收藏

    #include<cstdio> #include<cstring> using namespace std; bool map[505][505]; int n, k; bo ...

  7. POJ2195 Going Home[费用流|二分图最大权匹配]

    Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22088   Accepted: 11155 Desc ...

  8. 【BZOJ 3308】 3308: 九月的咖啡店 (费用流|二分图最大权匹配)

    3308: 九月的咖啡店 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 244  Solved: 86 Description 深绘里在九份开了一家咖 ...

  9. [hdu1533]二分图最大权匹配 || 最小费用最大流

    题意:给一个n*m的地图,'m'表示人,'H'表示房子,求所有人都回到房子所走的距离之和的最小值(距离为曼哈顿距离). 思路:比较明显的二分图最大权匹配模型,将每个人向房子连一条边,边权为曼哈顿距离的 ...

随机推荐

  1. 使用SharpZip压缩与解压缩

    使用SharpZip压缩与解压缩 编写人:左丘文 2015-4-11 大家在做项目时,相信会经常性的会遇到要对数据流或dataset byte[] 或文件进行压缩和解压缩,比如:利用webservic ...

  2. 重温MySQL

    登录 mysql -uroot -p123456 查询当前用户 select user(); 不执行某条语句 \c 查看帮助信息 help create user; 创建用户 create user ...

  3. HDU 3746 Cyclic Nacklace (用kmp求循环节)

    Cyclic Nacklace Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  4. 【ZZ】大型数据库应用解决方案总结 | 菜鸟教程

    大型数据库应用解决方案总结 http://www.runoob.com/w3cnote/db-solutions.html

  5. Conv

    folly/Conv.h folly/Conv.h is a one-stop-shop for converting values across types. Its main features a ...

  6. 给iOS开发新手送点福利,简述UIControl事件的用法

    UIControl事件 1.UIControlEventTouchDown 单点触摸按下事件:用户点触屏幕,或者又有新手指落下的时候. 2.UIControlEventTouchDownRepeat ...

  7. 给iOS开发新手送点福利,简述UIButton的属性和用法

    UIButton属性 1.UIButton状态: UIControlStateNormal          // 正常状态    UIControlStateHighlighted     // 高 ...

  8. Pthreads 信号量,路障,条件变量

    ▶ 使用信号量来进行线程间信息传递 ● 代码 #include <stdio.h> #include <pthread.h> #include <semaphore.h& ...

  9. Linux及安卓的事件处理资料

    事件处理机制介绍: https://source.android.com/devices/input/overview.html http://newandroidbook.com/Book/Inpu ...

  10. 「小程序JAVA实战」小程序的视频点赞功能开发(62)

    转自:https://idig8.com/2018/09/24/xiaochengxujavashizhanxiaochengxudeshipindianzangongnengkaifa61/ 视频点 ...