用训练好的caffemodel来进行分类
caffe程序自带有一张小猫图片,存放路径为caffe根目录下的 examples/images/cat.jpg, 如果我们想用一个训练好的caffemodel来对这张图片进行分类,那该怎么办呢? 如果不用这张小猫图片,换一张别的图片,又该怎么办呢?如果学会了小猫图片的分类,那么换成其它图片,程序实际上是一样的。
开发caffe的贾大牛团队,利用imagenet图片和caffenet模型训练好了一个caffemodel, 供大家下载。要进行图片的分类,这个caffemodel是最好不过的了。所以,不管是用c++来进行分类,还是用python接口来分类,我们都应该准备这样三个文件:
1、caffemodel文件。
可以直接在浏览器里输入地址下载,也可以运行脚本文件下载。下载地址为:http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel
文件名称为:bvlc_reference_caffenet.caffemodel,文件大小为230M左右,为了代码的统一,将这个caffemodel文件下载到caffe根目录下的 models/bvlc_reference_caffenet/ 文件夹下面。也可以运行脚本文件进行下载:
# sudo ./scripts/download_model_binary.py models/bvlc_reference_caffenet
2、均值文件。
有了caffemodel文件,就需要对应的均值文件,在测试阶段,需要把测试数据减去均值。这个文件我们用脚本来下载,在caffe根目录下执行:
# sudo sh ./data/ilsvrc12/get_ilsvrc_aux.sh
执行并下载后,均值文件放在 data/ilsvrc12/ 文件夹里。
3、synset_words.txt文件
在调用脚本文件下载均值的时候,这个文件也一并下载好了。里面放的是1000个类的名称。
数据准备好了,我们就可以开始分类了,我们给大家提供两个版本的分类方法:
一、c++方法
在caffe根目录下的 examples/cpp-classification/ 文件夹下面,有个classification.cpp文件,就是用来分类的。当然编译后,放在/build/examples/cpp_classification/ 下面
我们就直接运行命令:
# sudo ./build/examples/cpp_classification/classification.bin \
models/bvlc_reference_caffenet/deploy.prototxt \
models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \
data/ilsvrc12/imagenet_mean.binaryproto \
data/ilsvrc12/synset_words.txt \
examples/images/cat.jpg
命令很长,用了很多的\符号来换行。可以看出,从第二行开始就是参数,每行一个,共需要4个参数
运行成功后,输出top-5结果:
---------- Prediction for examples/images/cat.jpg ----------
0.3134 - "n02123045 tabby, tabby cat"
0.2380 - "n02123159 tiger cat"
0.1235 - "n02124075 Egyptian cat"
0.1003 - "n02119022 red fox, Vulpes vulpes"
0.0715 - "n02127052 lynx, catamount"
即有0.3134的概率为tabby cat, 有0.2380的概率为tiger cat ......
二、python方法
python接口可以使用jupyter notebook来进行可视化操作,因此推荐使用这种方法。
在这里我就不用可视化了,编写一个py文件,命名为py-classify.py

#coding=utf-8
#加载必要的库
import numpy as np import sys,os #设置当前目录
caffe_root = '/home/xxx/caffe/'
sys.path.insert(0, caffe_root + 'python')
import caffe
os.chdir(caffe_root) net_file=caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt'
caffe_model=caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'
mean_file=caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy' net = caffe.Net(net_file,caffe_model,caffe.TEST)
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
transformer.set_mean('data', np.load(mean_file).mean(1).mean(1))
transformer.set_raw_scale('data', 255)
transformer.set_channel_swap('data', (2,1,0)) im=caffe.io.load_image(caffe_root+'examples/images/cat.jpg')
net.blobs['data'].data[...] = transformer.preprocess('data',im)
out = net.forward() imagenet_labels_filename = caffe_root + 'data/ilsvrc12/synset_words.txt'
labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\t') top_k = net.blobs['prob'].data[0].flatten().argsort()[-1:-6:-1]
for i in np.arange(top_k.size):
print top_k[i], labels[top_k[i]]

执行这个文件,输出:
281 n02123045 tabby, tabby cat
282 n02123159 tiger cat
285 n02124075 Egyptian cat
277 n02119022 red fox, Vulpes vulpes
287 n02127052 lynx, catamount
caffe开发团队实际上也编写了一个python版本的分类文件,路径为 python/classify.py
运行这个文件必需两个参数,一个输入图片文件,一个输出结果文件。而且运行必须在python目录下。假设当前目录是caffe根目录,则运行:
# cd python
# sudo python classify.py ../examples/images/cat.jpg result.npy
分类的结果保存为当前目录下的result.npy文件里面,是看不见的。而且这个文件有错误,运行的时候,会提示
Mean shape incompatible with input shape
的错误。因此,要使用这个文件,我们还得进行修改:
1、修改均值计算:
定位到
mean = np.load(args.mean_file)
这一行,在下面加上一行:
mean=mean.mean(1).mean(1)
则可以解决报错的问题。
2、修改文件,使得结果显示在命令行下:
定位到
# Classify.
start = time.time()
predictions = classifier.predict(inputs, not args.center_only)
print("Done in %.2f s." % (time.time() - start))
这个地方,在后面加上几行,如下所示:

# Classify.
start = time.time()
predictions = classifier.predict(inputs, not args.center_only)
print("Done in %.2f s." % (time.time() - start))
imagenet_labels_filename = '../data/ilsvrc12/synset_words.txt'
labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\t')
top_k = predictions.flatten().argsort()[-1:-6:-1]
for i in np.arange(top_k.size):
print top_k[i], labels[top_k[i]]

就样就可以了。运行不会报错,而且结果会显示在命令行下面。
用训练好的caffemodel来进行分类的更多相关文章
- Caffe学习系列(20):用训练好的caffemodel来进行分类
caffe程序自带有一张小猫图片,存放路径为caffe根目录下的 examples/images/cat.jpg, 如果我们想用一个训练好的caffemodel来对这张图片进行分类,那该怎么办呢? 如 ...
- 【神经网络与深度学习】用训练好的caffemodel来进行分类
现在我正在利用imagenet进行finetune训练,待训练好模型,下一步就是利用模型进行分类.故转载一些较有效的相关博客. 博客来源:http://www.cnblogs.com/denny402 ...
- 用训练好的caffemodel对单个/批量图片进行分类
一.单个图片进行分类 这个比较简单,在*.bat文件中输入以下代码: @echo off set BIN_DIR=D:\caffe\caffe-windows\Build\x64\Release se ...
- 从零到一:caffe-windows(CPU)配置与利用mnist数据集训练第一个caffemodel
一.前言 本文会详细地阐述caffe-windows的配置教程.由于博主自己也只是个在校学生,目前也写不了太深入的东西,所以准备从最基础的开始一步步来.个人的计划是分成配置和运行官方教程,利用自己的数 ...
- 实践详细篇-Windows下使用Caffe训练自己的Caffemodel数据集并进行图像分类
三:使用Caffe训练Caffemodel并进行图像分类 上一篇记录的是如何使用别人训练好的MNIST数据做训练测试.上手操作一边后大致了解了配置文件属性.这一篇记录如何使用自己准备的图片素材做图像分 ...
- 【神经网络与深度学习】Caffe Model Zoo许多训练好的caffemodel
Caffe Model Zoo 许多的研究者和工程师已经创建了Caffe模型,用于不同的任务,使用各种种类的框架和数据.这些模型被学习和应用到许多问题上,从简单的回归到大规模的视觉分类,到Siames ...
- 在caffe中用训练好的 caffemodel 来分类新的图片所遇到的问题
结合之前的博客: http://www.cnblogs.com/Allen-rg/p/5834551.html#3949333 用caffemodel去测试单通道的图像(mnist数据集)时,出现了问 ...
- 利用Caffe训练模型(solver、deploy、train_val)+python使用已训练模型
本文部分内容来源于CDA深度学习实战课堂,由唐宇迪老师授课 如果你企图用CPU来训练模型,那么你就疯了- 训练模型中,最耗时的因素是图像大小size,一般227*227用CPU来训练的话,训练1万次可 ...
- 利用Caffe训练模型(solver、deploy、train_val) + python如何使用已训练模型
版权声明:博主原创文章,微信公众号:素质云笔记,转载请注明来源“素质云博客”,谢谢合作!! https://blog.csdn.net/sinat_26917383/article/details/5 ...
随机推荐
- js的delete和void关键字
delete关键字 delete关键字的作用: 删除对象的属性 语法:delete 对象.属性 可以删除没有使用var关键字声明的全局变量(直接定义在window上面的属性) delete关键字的 ...
- INSERT高级应用
INSERT INTO departments VALUES (departments_seq.nextval, 'Entertainment', 162, 1400); INSERT INTO em ...
- linux对文件某列求和
对文件某列求和: -F,用,号分隔,求第3行的和 awk -F, '{sum += $3};END {print sum}' test
- mysql 远程连接超时解决办法
设置mysql远程连接root权限 在远程连接mysql的时候应该都碰到过,root用户无法远程连接mysql,只可以本地连,对外拒绝连接. 需要建立一个允许远程登录的数据库帐户,这样才可以进行在远程 ...
- 170808、生成为CVS文件
/** * Desc : 生成为CVS文件 * User : RICK * @param data 源数据List * @param map csv文件的列表头map * @param outPutP ...
- nginx解决带_的head内容丢失
若请求 Head 信息中存在自定义信息并且以 "_" 下划线间隔,则必须配置underscores_in_headers 否则 Head 无法向 Tomcat 转发 解决办法: 在 ...
- 在唯一密钥属性“fileExtension”设置为“.log”时,无法添加类型为“mimeMap”的重复集合项
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAkoAAAFfCAIAAAA+snR7AAAgAElEQVR4nOzdZ1xT18PAcf+1VpZaW6
- poj1191 棋盘分割【区间DP】【记忆化搜索】
棋盘分割 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16263 Accepted: 5812 Description ...
- rac下asm管理的表空间-数据文件的重命名
asm下表空间的重命名与普通文件系统下的表空间重命名原理是一样的,只不过asm管理的数据文件有一些需要注意的地方,另外在asm下操作数据文件需要格外小心,稍有不慎将会造成数据文件丢失,如可以做备份最好 ...
- Create an Index
db.collection.createIndex( { name: -1 } ) Indexes — MongoDB Manual https://docs.mongodb.com/manual/i ...