My little sister had a beautiful necklace made of colorful beads. Two successive beads in the necklace shared a common color at their meeting point. The figure below shows a segment of the necklace:


But, alas! One day, the necklace was torn and the beads were all scattered over the floor. My sister did her best to recollect all the beads from the floor, but she is not sure whether she was able to collect all of them. Now, she has come to me for help. She wants to know whether it is possible to make a necklace using all the beads she has in the same way her original necklace was made and if so in which order the bids must be put.
Please help me write a program to solve the problem.
Input
The input contains T test cases. The first line of the input contains the integer T.
The first line of each test case contains an integer N ( 5 <= N <= 1000) giving the number of beads my sister was able to collect. Each of the next N lines contains two integers describing the colors of a bead. Colors are represented by integers ranging from 1 to 50.
Output
For each test case in the input first output the test case number as shown in the sample output. Then if you apprehend that some beads may be lost just print the sentence ``some beads may be lost" on a line by itself. Otherwise, print N lines with a single bead description on each line. Each bead description consists of two integers giving the colors of its two ends. For 1 <= i <= N1 , the second integer on line i must be the same as the first integer on line i + 1. Additionally, the second integer on line N must be equal to the first integer on line 1. Since there are many solutions, any one of them is acceptable.
Print a blank line between two successive test cases.
Sample Input
2
5
1 2
2 3
3 4
4 5
5 6
5
2 1
2 2
3 4
3 1
2 4
Sample Output
Case #1
some beads may be lost
 
Case #2
2 1
1 3
3 4
4 2
2 2

题意

给你n串珠子的颜色(两边),问是否能连成一个环

题解

1.把每串珠子想成两个相互连接点,变成无向图

2.并查集判断是否符合无向图欧拉回路的条件:每个点的度数都为偶数

3.这里注意DFS的时候要逆序输出(DFS结束的条件是节点没有可走的边,回溯,回溯的时候若遇到节点还有可走的边,再去递归那条边,使得所有边都被访问过)

代码

 #include<bits/stdc++.h>
using namespace std;
int Map[][],Du[],F[];
int Find(int x)
{
return F[x]==x?x:F[x]=Find(F[x]);
}
void dfs(int u)
{
for(int v=;v<=;v++)
if(Map[u][v]>)//可以走的边
{
Map[u][v]--;//边删掉
Map[v][u]--;
dfs(v);
printf("%d %d\n",v,u);//逆序输出
}
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n,t,u,v;
scanf("%d",&t);
for(int k=;k<=t;k++)
{
if(k!=)printf("\n");
printf("Case #%d\n",k);
scanf("%d",&n);
memset(Du,,sizeof(Du));
memset(Map,,sizeof(Map));
for(int i=;i<=;i++)
F[i]=i;
for(int i=;i<=n;i++)
{
scanf("%d%d",&u,&v);
Du[u]++;Du[v]++;//度数
Map[u][v]++;Map[v][u]++;//边
int fu=Find(u);
int fv=Find(v);
if(fu!=fv)
F[fu]=fv;
}
int flag=;
for(int i=;i<=;i++)
{
if(Du[i]==)continue;
if(Du[i]%==||Find(i)!=Find(u))
{
flag=;break;
}
}
if(flag)dfs(u);
else printf("some beads may be lost\n"); }
return ;
}

UVa 10054 The Necklace(无向图欧拉回路)的更多相关文章

  1. UVA 10054 The Necklace (无向图的欧拉回路)

    本文链接:http://www.cnblogs.com/Ash-ly/p/5405904.html 题意: 妹妹有一条项链,这条项链由许多珠子串在一起组成,珠子是彩色的,两个连续的珠子的交汇点颜色相同 ...

  2. UVA 10054 The Necklace(欧拉回路,打印路径)

    题目链接: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  3. uva 10054 The Necklace(欧拉回路)

    The Necklace  My little sister had a beautiful necklace made of colorful beads. Two successive beads ...

  4. UVa 10054 The Necklace【欧拉回路】

    题意:给出n个珠子,珠子颜色分为两半,分别用1到50之间的数字表示, 现在给出n个珠子分别的颜色,问是否能够串成一个环.即为首尾相连,成为一个回路 判断是否构成一个环,即判断是否为欧拉回路,只需要判断 ...

  5. UVa 10054 : The Necklace 【欧拉回路】

    题目链接 题目大意:我的妹妹有一串由各种颜色组成的项链. 项链中两个连续珠子的接头处共享同一个颜色. 如上图, 第一个珠子是green+red, 那么接这个珠子的必须以red开头,如图的red+whi ...

  6. uva 10054 The Necklace 拼项链 欧拉回路基础应用

    昨天做了道水题,今天这题是比较水的应用. 给出n个项链的珠子,珠子的两端有两种颜色,项链上相邻的珠子要颜色匹配,判断能不能拼凑成一天项链. 是挺水的,但是一开始我把整个项链看成一个点,然后用dfs去找 ...

  7. UVA 10054 the necklace 欧拉回路

    有n个珠子,每颗珠子有左右两边两种颜色,颜色有1~50种,问你能不能把这些珠子按照相接的地方颜色相同串成一个环. 可以认为有50个点,用n条边它们相连,问你能不能找出包含所有边的欧拉回路 首先判断是否 ...

  8. UVa 10054 The Necklace BFS+建模欧拉回路

    算法指南 主要就是建立欧拉回路 #include <stdio.h> #include <string.h> #include <iostream> #includ ...

  9. 【欧拉回路】UVA - 10054 The Necklace

    题目大意: 一个环被切割成了n个小块,每个小块有头尾两个关键字,表示颜色. 目标是判断给出的n个小块能否重构成环,能则输出一种可行解(按重构次序输出n个色块的头尾颜色).反之输出“some beads ...

随机推荐

  1. 机器学习进阶-案例实战-停车场车位识别-keras预测是否停车站有车

    import numpy import os from keras import applications from keras.preprocessing.image import ImageDat ...

  2. WPF线性渐变画刷应用之——炫彩线条

    效果图: Xaml代码: <Rectangle Width="800" Height="10"> <Rectangle.Fill> &l ...

  3. MFC+OpenGL基础绘制<转>

    转载地址:https://blog.csdn.net/u013232740/article/details/47904115 ------------------------------------- ...

  4. APP-12-视觉技术-身份证识别

    1.Postman测试 图片转换为Base64:http://imgbase64.duoshitong.com/ Base64: Base64数据去掉表头文件:data:image/png;base6 ...

  5. linux环境运行java项目并有外部引用jar

    eclipse目录结构: linux目录结构: lib目录结构: 其中除了IMT_ENCODING_DSP.jar其余的都是外部引用的jar IMT_ENCODING_DSP.jar是java项目打包 ...

  6. ubuntu 使用命令行登录oracle

    1.检查环境变量设置 echo $ORACLE_HOME 2.配置oracle数据库信息,将oracle地址端口等信息放在$ORACLE_HOME/network/admin目录下的tnsnames. ...

  7. Kubernetes 1.8.x 全手动安装教程----转自Kubernetes中文社区(部分内容根据实验环境做了些修改,特此感谢Kubernetes中文社区)

    Kubernetes 提供了许多云端平台与操作系统的安装方式,本章将以全手动安装方式来部署,主要是学习与了解 Kubernetes 创建流程.若想要了解更多平台的部署可以参考 Picking the ...

  8. Windows命令行打开常用界面

    本文主要介绍Windows下命令行操作打开常用界面,使用方法为在DOS命令行下输入相关命令.可以减少多次操作界面.可以尝试在命令行执行下面提到的命令感受下,快捷键主要内容包括: 1.查看计算机的基本信 ...

  9. 在服务器上同时启动多个tomcat

    我所用Tomcat服务器都为zip版,非安装版.以两个为例:安装第二个Tomcat完成后,到安装目录下的conf子目录中打开server.xml文件,查找以下三处:(1) 修改http访问端口(默认为 ...

  10. Android高级控件(上)

    Toast信息提示框 bt1.setOnClickListener(new OnClickListener() { public void onClick(View v) { Toast.makeTe ...