HDU2819(KB10-E 二分图最大匹配)
Swap
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3800 Accepted Submission(s): 1401
Special Judge
Problem Description
Input
Output
If it is impossible to make all the diagonal entries equal to 1, output only one one containing “-1”.
Sample Input
0 1
1 0
2
1 0
1 0
Sample Output
R 1 2
-1
Source
//2017-08-26
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int N = ;
const int M = ;
int head[N], tot;
struct Edge{
int to, next;
}edge[M]; void init(){
tot = ;
memset(head, -, sizeof(head));
} void add_edge(int u, int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++; edge[tot].to = u;
edge[tot].next = head[v];
head[v] = tot++;
} int n;
int matching[N];
int check[N];
bool dfs(int u){
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(!check[v]){//要求不在交替路
check[v] = ;//放入交替路
if(matching[v] == - || dfs(matching[v])){
//如果是未匹配点,说明交替路为增广路,则交换路径,并返回成功
matching[u] = v;
matching[v] = u;
return true;
}
}
}
return false;//不存在增广路
} //hungarian: 二分图最大匹配匈牙利算法
//input: null
//output: ans 最大匹配数
int hungarian(){
int ans = ;
memset(matching, -, sizeof(matching));
for(int u = ; u <= n; u++){
if(matching[u] == -){
memset(check, , sizeof(check));
if(dfs(u))
ans++;
}
}
return ans;
} const int MAXID = ;
int a[N], b[N], cnt; int main()
{
std::ios::sync_with_stdio(false);
//freopen("inputE.txt", "r", stdin);
while(cin>>n){
init();
int v;
for(int i = ; i <= n; i++){
for(int j = ; j <= n; j++){
cin>>v;
if(v){
add_edge(i, j+MAXID);
}
}
}
int match = hungarian();
if(match != n)cout<<-<<endl;
else{
for(int i = ; i <= n; i++)
matching[i]-=;
cnt = ;
for(int i = ; i <= n; i++){
for(int j = ; j <= n; j++){
if(i == j)continue;
if(matching[j] == i){
swap(matching[i], matching[j]);
a[cnt] = i;
b[cnt++] = j;
}
}
}
cout<<cnt<<endl;
for(int i = ; i < cnt; i++)
cout<<"R "<<a[i]<<" "<<b[i]<<endl;
}
} return ;
}
HDU2819(KB10-E 二分图最大匹配)的更多相关文章
- POJ 2226二分图最大匹配
匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名.匈牙利算法是基于Hall定理中充分性证明的思想,它是二部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图 ...
- POJ2239 Selecting Courses(二分图最大匹配)
题目链接 N节课,每节课在一个星期中的某一节,求最多能选几节课 好吧,想了半天没想出来,最后看了题解是二分图最大匹配,好弱 建图: 每节课 与 时间有一条边 #include <iostream ...
- poj 2239 二分图最大匹配,基础题
1.poj 2239 Selecting Courses 二分图最大匹配问题 2.总结:看到一个题解,直接用三维数组做的,很巧妙,很暴力.. 题意:N种课,给出时间,每种课在星期几的第几节课上 ...
- UESTC 919 SOUND OF DESTINY --二分图最大匹配+匈牙利算法
二分图最大匹配的匈牙利算法模板题. 由题目易知,需求二分图的最大匹配数,采取匈牙利算法,并采用邻接表来存储边,用邻接矩阵会超时,因为邻接表复杂度O(nm),而邻接矩阵最坏情况下复杂度可达O(n^3). ...
- 二分图最大匹配的König定理及其证明
二分图最大匹配的K?nig定理及其证明 本文将是这一系列里最短的一篇,因为我只打算把K?nig定理证了,其它的废话一概没有. 以下五个问题我可能会在以后的文章里说,如果你现在很想知道的话,网上 ...
- POJ3057 Evacuation(二分图最大匹配)
人作X部:把门按时间拆点,作Y部:如果某人能在某个时间到达某门则连边.就是个二分图最大匹配. 时间可以二分枚举,或者直接从1枚举时间然后加新边在原来的基础上进行增广. 谨记:时间是个不可忽视的维度. ...
- ZOJ1654 Place the Robots(二分图最大匹配)
最大匹配也叫最大边独立集,就是无向图中能取出两两不相邻的边的最大集合. 二分图最大匹配可以用最大流来解. 如果题目没有墙,那就是一道经典的二分图最大匹配问题: 把地图上的行和列分别作为点的X部和Y部, ...
- HDU:过山车(二分图最大匹配)
http://acm.hdu.edu.cn/showproblem.php?pid=2063 题意:有m个男,n个女,和 k 条边,求有多少对男女可以搭配. 思路:裸的二分图最大匹配,匈牙利算法. 枚 ...
- UOJ #78 二分图最大匹配
#78. 二分图最大匹配 从前一个和谐的班级,有 nl 个是男生,有 nr 个是女生.编号分别为 1,…,nl 和 1,…,nr. 有若干个这样的条件:第 v 个男生和第 u 个女生愿意结为配偶. 请 ...
随机推荐
- solr 5.5使用 和pyg里 的4.10.3版 部署到tomcat中不一样(不使用内置jetty)
http://www.cnblogs.com/zhuxiaojie/p/5764680.html
- Spring Boot日志管理
SpringBoot内部使用Commons Logging来记录日志,但是默认也提供了对常用日志组件的支持,如:Log4j,Logback等.每种Logger都可以通过配置使用控制台或者文件输出日志内 ...
- drf-视图的理解
1. 类视图 写视图的步骤: 1. 数据库查询, 2. 构建序列化器, 进行序列化操作, 返回数据 一. 两大基类 >1 APIView (以常规的方法实现get po ...
- Python(27)--文件相关处理的应用(增、删、改、查)
文件名为message,文件内容如下: global log 127.0.0.1 local2 daemon maxconn 256 log 127.0.0.1 local2 info default ...
- 08-03 java 继承
继承格式,优缺点,概述: /* 继承概述: 把多个类中相同的内容给提取出来定义到一个类中. 如何实现继承呢? Java提供了关键字:extends 格式: class 子类名 extends 父类名 ...
- K-means算法的原理、优缺点及改进(转)
文章内容转载自:http://blog.csdn.net/sinat_35512245/article/details/55051306 ...
- Python多线程-Event(事件对象)
Event 事件对象管理一个内部标志,通过set()方法将其设置为True,并使用clear()方法将其设置为False.wait()方法阻塞,直到标志为True.该标志初始为False. 方法: i ...
- spring-如何将spring源码成功导入Eclipse中
一.从 github上下载Spring源码到本机 二.利用 Gradle 编译 Spring 源码 环境: - Spring源码版本:spring-framework-4.3.x - Gradle版本 ...
- todolist增加markdown模块
markdown编辑器 利用`markdown_js`开源库实现todolist小项目的markdown日记本功能 todolist小项目地址 之前的介绍随笔todoList markdown-js仓 ...
- 自制“低奢内”CSS3注册表单,包含JS验证哦。请别嫌弃,好吗?。
要求 必备知识 基本了解CSS语法,初步了解CSS3语法知识.和JS/JQuery基本语法. 开发环境 Adobe Dreamweaver CS6 演示地址 演示地址 预览截图(抬抬你的鼠标就可以看到 ...