题意

平面上有 \(n\) 个点,选出六个点构成两个三角形,问有多少种构造方式使得两个三角形没有交集。

\(n\leq 2000\)

分析

  • 枚举连接两个三角形的两个顶点,同时能够将两个三角形划分在直线两侧的直线。

  • 考虑每个点和 \(n-1\) 个点连边,这些边按照极角排序,并维护直线左侧有多少个点(如果跨过极角等于 \(\pi\) 就再加一倍直线,同时弧度 \(+2\pi\)),那么答案增加量就是 \(\binom{{cnt}_l}{2}\times\binom{n-2-{cnt}_l}{2}\)。

  • 每对三角形会有两条直线计算到,所以最后答案除以2.

  • 时间复杂度 \(O(n^2logn)\) 。

代码

#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].lst,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
typedef double db;
const db INF=1.0*1e14,pi=acos(-1.0);
const int N=4004;
int n;
LL ans;
db ang[N],x[N],y[N];
LL C(int n){
return 1ll*n*(n-1)/2;
}
int main(){
n=gi();
rep(i,1,n) scanf("%lf%lf",&x[i],&y[i]);
rep(o,1,n){
int ndc=0;
rep(i,1,n) if(o^i) ang[++ndc]=atan2(y[i]-y[o],x[i]-x[o]);
sort(ang+1,ang+ndc+1);
rep(i,1,n-1) ang[++ndc]=ang[i]+2*pi;
for(int i=1,j=1;i<n;++i){
while(ang[j]-ang[i]<=pi) ++j;
int l=j-i-1,r=n-2-l;
ans+=C(l)*C(r);
}
}
printf("%lld\n",ans>>1);
return 0;
}

[CF1025F]Disjoint Triangles[极角排序+组合计数]的更多相关文章

  1. 【BZOJ-1913】signaling信号覆盖 极角排序 + 组合

    1913: [Apio2010]signaling 信号覆盖 Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 1232  Solved: 506[Subm ...

  2. How Many Triangles (极角排序 + 尺取法)

    题意:二维平面与有很多个点,然后求构成锐角三角形的个数. 思路:对于每一个三角形我们知道存在至少2个锐角,只要有一个钝角就不行了,所以我们的想法就是枚举所有夹角的状态,然后得知情况,确定用总个数减去- ...

  3. hdu-5738 Eureka(组合计数+极角排序)

    题目链接: Eureka Time Limit: 8000/4000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) Pr ...

  4. hdu-5784 How Many Triangles(计算几何+极角排序)

    题目链接: How Many Triangles Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  5. 【计算几何】【极角排序】【二分】Petrozavodsk Summer Training Camp 2016 Day 6: Warsaw U Contest, XVI Open Cup Onsite, Sunday, August 28, 2016 Problem J. Triangles

    平面上给你n(不超过2000)个点,问你能构成多少个面积在[A,B]之间的Rt三角形. 枚举每个点作为直角顶点,对其他点极角排序,同方向的按长度排序,然后依次枚举每个向量,与其对应的另一条直角边是单调 ...

  6. LA 4064 (计数 极角排序) Magnetic Train Tracks

    这个题和UVa11529很相似. 枚举一个中心点,然后按极角排序,统计以这个点为钝角的三角形的个数,然后用C(n, 3)减去就是答案. 另外遇到直角三角形的情况很是蛋疼,可以用一个eps,不嫌麻烦的话 ...

  7. [CodeForces]CodeForces - 1025F Disjoint Triangles

    题意: 给出平面上n个点,问能在其中选出6个点,组成两个三角形,使得其互不相交 问有多少种选法 大致思路  考虑枚举一条直线,将所有得点分为左右两部分,其中有两个点在直线上, 以这两个点为顶点,分别统 ...

  8. 一道组合数问题--出自 曹钦翔_wc2012组合计数与动态规划

    一道组合数问题--出自 曹钦翔_wc2012组合计数与动态规划 [问题描述] 众所周知,xyc 是一个宇宙大犇,他最近在给他的学弟学妹们出模拟赛. 由于 xyc 实在是太巨了,他出了一套自认为很水的毒 ...

  9. CodeForces - 1025F:Disjoint Triangles (几何)

    A point belongs to a triangle if it lies inside the triangle or on one of its sides. Two triangles a ...

随机推荐

  1. Win10命令行激活 & 电脑组装

    系统激活: 1. 管理员身份运行 cmd 2. slmgr.vbs /upk                                                              ...

  2. firefox(火狐)和Chrome(google)浏览器清空缓存操作的方法指引

    摘要说明: 1.系统做升级更新,更新了css和js 2.系统更新有,因为缓存问题,有客户反馈新增功能不能使用 3.所以要清空缓存,提供火狐和谷歌浏览器清空缓存的操作指引 4.附:代码层面的清空缓存方案 ...

  3. 安全之路 —— C/C++开3389端口(远程终端)

    简介 在渗透测试中开启对方电脑的3389端口是入侵者加入对方计算机账户后要想直接控制对方计算机的必须步骤,即开启对方计算机的远程终端功能,不同的Windows系统要开启3389需要修改不同的注册表项, ...

  4. TiDB数据库 使用syncer工具同步实时数据

    mysql> select campaign_id ,count(id) from creative_output group by campaign_id; rows min 44.23 se ...

  5. [AHOI2014/JSOI2014]支线剧情

    题目 有源汇上下界最小费用可行流 首先注意到要求是每一条边都经过至少一次,所以对于每一条边我们设成\([1,\infty]\)就好了 另外所有点都能结束剧情,所有点都要向汇点\(t\)连一条\([0, ...

  6. C# winform单元格的formatted值的类型错误 DataGridView中CheckBox列运行时候System.FormatException异常

    在DataGridView手动添加了CheckBox列;在窗体Show的时候,遇到一个错误:错误如下: DataGridView中发生一下异常:System.FormatException:单元格的F ...

  7. opencv——对象计数

     思路: 1.通过形态学操作.阈值处理.距离变换等方法,使得各个轮廓分开 2.计算轮廓数量 #include <opencv2/opencv.hpp> #include <iostr ...

  8. CentOS中安装Azkaban 2.5

    必备软件 yum install git -y 单机安装步骤 git clone https://github.com/azkaban/azkaban.git cd azkaban; ./gradle ...

  9. Android使用AsyncTask设置请求超时的注意事项

    备注:该篇文章为原创,转载请声明地址,谢谢! /** * AsyncTaskTools2集成了AsyncTask类 * 前三个参数为回到函数,最后一个为全局的Context */ final Asyn ...

  10. POJ1127 Jack Straws

    给你一些线段,求出哪些线段是相连的,哪些是不相连的.相连包括间接相连,即这两条线段本身不直接相连,而是通过其它线段的连接而间接相连. 线段相交+并查集 这里主要说如何判断线段相交:快速排斥试验+跨立试 ...