BZOJ4654 NOI2016国王饮水记(动态规划+三分)
有很多比较显然的性质。首先每个城市(除1外)至多被连通一次,否则没有意义。其次将城市按水位从大到小排序后,用以连通的城市集合是一段前缀,并且不应存在比1城市还小的。然后如果确定了选取的城市集合,每次选择也应该是连续的一段,且应从小到大选,这样保证了将其他城市的水尽量分到1,而不是被另外的城市分流。同时也说明如果不考虑次数限制应该划分的尽量多。
考虑怎么用这些性质做。按水位从小到大排序,考虑大力dp,即设f[i][j]为前i个城市(可以不全选)分了j组时的答案,转移即f[i][j]=max{(f[k][j-1]+si-sk)/(i-k+1)}。转移显然可以看做是找该点与其他点的斜率最大值,可以在下凸壳上三分。于是可以得到一个O(nkplogn)的优秀算法。
感觉上这个高精度的保留位数实在有点唬人,哪来那么大误差啊?于是考虑直接用long double,记录转移点,最后再用高精度计算答案。直接从复杂度里去掉了一个p,效果拔群。获得了82分的好成绩,3T1WA。又瞎猜了一发答案随分组数量变化是个凸函数,搞了个wqs二分上去,非常惨的假掉了。然后突然发现之前的82分代码算斜率甚至忘了return,加上之后获得了94分的好成绩,get了两个WA。再冷静一下发现之前因为空间不够把数组开小了,改成滚动之后又过掉最后一个点,获得了97分的好成绩。然后想起来没有把<h1的去掉因为感觉没有必要,去掉之后,就过了。
就这么水过算了我不管了反正正解那种结论怎么猜的到啊。
//以下代码删除了高精度类
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include <string>
#include<algorithm>
using namespace std;
#define ll long long
#define N 8010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,p,a[N],b[N],from[N][N],q[N],h;
long double f[][N];
Decimal calc(int m,int n)
{
if (m==) return Decimal(h);
return (calc(m-,from[m][n])+a[n]-a[from[m][n]])/(n-from[m][n]+);
}
long double slope(int j,int x,int y){return ((a[y]-f[j][y])-(a[x]-f[j][x]))/(y-x);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4654.in","r",stdin);
freopen("bzoj4654.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),p=read();
for (int i=;i<=n;i++) a[i]=read();h=a[];
int t=;for (int i=;i<=n;i++) if (a[i]>h) b[++t]=a[i];
sort(b+,b+t+);n=t;for (int i=;i<=n;i++) a[i]=b[i];
for (int i=;i<=n;i++) a[i]+=a[i-];
for (int i=;i<=n;i++) f[][i]=h;
for (int j=;j<=min(n,m);j++)
{
int tail=;memset(f[j&],,sizeof(f[j&]));
for (int i=;i<=n;i++)
{
while (tail>&&slope(j&^,q[tail-],q[tail])>slope(j&^,q[tail],i-)) tail--;
q[++tail]=i-;
int l=,r=tail;
while (l+<r)
{
int mid1=(l+r>>)-,mid2=(l+r>>)+;
if ((f[j&^][q[mid1]]+a[i]-a[q[mid1]])*(i-q[mid2]+)<(f[j&^][q[mid2]]+a[i]-a[q[mid2]])*(i-q[mid1]+)) l=mid1;else r=mid2;
}
for (int k=l;k<=r;k++)
if (f[j&^][q[k]]+a[i]-a[q[k]]>f[j&][i]*(i-q[k]+)) f[j&][i]=(f[j&^][q[k]]+a[i]-a[q[k]])/(i-q[k]+),from[j][i]=q[k];
}
}
cout<<calc(min(n,m),n).to_string(p+);
return ;
}
BZOJ4654 NOI2016国王饮水记(动态规划+三分)的更多相关文章
- [UOJ#223][BZOJ4654][Noi2016]国王饮水记
[UOJ#223][BZOJ4654][Noi2016]国王饮水记 试题描述 跳蚤国有 n 个城市,伟大的跳蚤国王居住在跳蚤国首都中,即 1 号城市中.跳蚤国最大的问题就是饮水问题,由于首都中居住的跳 ...
- luogu P1721 [NOI2016]国王饮水记 斜率优化dp 贪心 决策单调性
LINK:国王饮水记 看起来很不可做的样子. 但实际上还是需要先考虑贪心. 当k==1的时候 只有一次操作机会.显然可以把那些比第一个位置小的都给扔掉. 然后可以得知剩下序列中的最大值一定会被选择. ...
- BZOJ4654/UOJ223 [Noi2016]国王饮水记
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- uoj233/BZOJ4654/洛谷P1721 [Noi2016]国王饮水记 【dp + 斜率优化】
题目链接 uoj233 题解 下面不加证明地给出几个性质: 小于\(h[1]\)的城市一定是没用的 任何城市联通包含\(1\)且只和\(1\)联通一次 联通顺序从小到大最优 单个联通比多个一起联通要优 ...
- [Noi2016]国王饮水记
来自FallDream的博客,未经允许,请勿转载,谢谢. 跳蚤国有 n 个城市,伟大的跳蚤国王居住在跳蚤国首都中,即 1 号城市中.跳蚤国最大的问题就是饮水问题,由于首都中居住的跳蚤实在太多,跳蚤国王 ...
- P1721 [NOI2016] 国王饮水记 题解
蒟蒻的第一篇黑题题解,求过. 题目链接 题意描述 这道题用简洁的话来说,就是: 给你 \(n\) 个数字,你可以让取其中任意若干个数字,每次操作,都会使所有取的数字变为取的数字的平均数,并且你最多只能 ...
- 【BZOJ4654】【NOI2016】国王饮水记(动态规划,斜率优化)
[BZOJ4654][NOI2016]国王饮水记(动态规划,斜率优化) 题面 BZOJ 洛谷 题解 首先肯定是找性质. 明确一点,比\(h_1\)小的没有任何意义. 所以我们按照\(h\)排序,那么\ ...
- *UOJ#223. 【NOI2016】国王饮水记
$n \leq 8000$的数列,问不超过$m \leq 1e9$次操作后第一个数字最大是多少.操作:选一些数,把他们变成他们的平均值.需要保留$p \leq 3000$位小数,提供了一个小数高精度库 ...
- [NOI 2016]国王饮水记
Description 题库链接 给出 \(n\) 个水杯,每个水杯装有不同高度的水 \(h_i\) ,每次可以指定任意多水杯用连通器连通后断开,问不超过 \(k\) 次操作之后 \(1\) 号水杯的 ...
随机推荐
- day41
今日内容: 1.完整查询语句 2.多表查询 3.子查询 1.完整查询语句: 首先对于昨天的学习补充一个复制表 示例:首先我在一个库中创建了一个t1表(id 为int类型 设置为主键 并且设置了自增描述 ...
- WPF XML序列化保存数据 支持Datagrid 显示/编辑/添加/删除数据
XML序列化保存数据 using System; using System.Collections.Generic; using System.Linq; using System.Text; usi ...
- 20155202张旭 Exp4 恶意代码分析
20155202张旭 Exp4 恶意代码分析 实验前问题回答: 一:如果在工作中怀疑一台主机上有恶意代码,但只是猜想,所有想监控下系统一天天的到底在干些什么.请设计下你想监控的操作有哪些,用什么方法来 ...
- 20155207 EXP7 网络欺诈技术防范
20155207 EXP7 网络欺诈技术防范 实验内容 本实践的目标理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法. 具体有 (1)简单应用SET工具建立冒名网站 (2)etterca ...
- 20155338《网络对抗》 Exp4 恶意代码分析
20155338<网络对抗>恶意代码分析 实验过程 1.计划任务监控 在C盘根目录下建立一个netstatlog.bat文件(先把后缀设为txt,保存好内容后记得把后缀改为bat),内容如 ...
- 自定义CCNode
对Touch事件的获取与处理可以使用CCLayer, CCMenuItem等,但是如果我们需要一个虚拟按键或者需要对特定精灵进行拖动等等,我们就需要自定义Touch类. 自定义Touch事件处理类重要 ...
- vue-cli 3.0 图片路径问题(何时使用 public 文件夹)
1. 图片放入public文件夹下时 参考:https://cli.vuejs.org/zh/guide/html-and-static-assets.html#public-%E6%96%87%E4 ...
- CS50.1
1,GUI,graphical user interface,图形用户界面 2.VB,visual basic,微软开发的一种程序语言 3,BIT,binary digit 比特 4,byte 5,8 ...
- vue基础项目安装教程
安装node.js 从node.js官网下载并安装node,安装过程很简单,一路“下一步”就可以了. 安装完成之后,打开命令行工具,输入 node -v,如下图,如果出现相应的版本号,则说明安装成功. ...
- Windows10没有修改hosts文件权限的解决方案(亲测有效)
当遇到有hosts文件不会编辑或者,修改了没办法保存”,以及需要权限等问题如图: 或者这样: 我学了一招,现在教给你: 1.win+R 2.进入hosts的文件所在目录: 3.我们开始如何操作才能不出 ...