A guess 解题报告
A guess
题意
选一个\([1,n](n\le 500)\)的整数,可以询问数是否属于区间\([l,r]\),多次询问一起回答,统计有多少种询问区间集合(无序)满足可以猜出这个数,对\(p(2^{29}\le p<2^{30})\)取模
中文题解看不懂,看了一下午英文题解,还是感觉理解的不好,就按照现在的理解说一下吧(为啥这题是今天最简单的啊...
首先你写暴力的话有个结论
每个权值\(i\)都有过询问区间集合\(S_i\),\(S_i\)代表覆盖整个值的询问集合。如果有某两个值的询问集合是一样的,那么就猜不出来,否则一定可以猜出来。
考虑按照这个把每个权值编号\(a_i\),以最小表示法来编号,要求是若\(S_i=S_j\),那么有\(a_i=a_j\)
不必在乎这个怎么编号的,反正一定可以编出来,可以发现\(\{S\}\)对\(\{a\}\)是一个单射,于是我们转过去统计\(\{a\}\)的数量。
按照要求我们可以统计存在\(a_i=a_j\)的集合的数量,就是补集的数量。
如果对于一个集合,有一个\(a_i=a_j\),那么我们可以把\([i,j]\)区间内的给拿开统计,等价于把这个区间缩成一个点,点的权值为\(a_i\),把所有类似这样的区间都拿开的话,剩下的集合是没有重复元素的,也就是我们最终需要求得的答案,记为\(f_i\)
注意理解一下为什么缩掉区间构成的子问题是相同的。
然后我们需要得到把一个原来长度为\(L\)的问题缩到\(K\)的方案数,设为\(g_{L,K}\)
不妨先把有关\(f\)的转移写出来
\]
即全集减去所有可以缩掉的方案(可缩的话一定不合法)
然后再考虑如何计算\(g\)
按照一些常见组合意义的东西的递推的方法,我们应该枚举最后一个一个集合大小。
首先不产生一个新的可缩的即\(g_{i-1,j-1}\)对\(g_{i,j}\)的贡献
然后枚举产生的缩掉的区间的大小\(k\),在这个区间里的询问集合是随意的,即为全集
那么转移就为
\]
嗯,感觉还是没理解到本质的东西...
如果非要写一些思路的话
把拥有集合的性质通过编号转换到元素统计上去,这点和后缀自动机状态的构建好像有些相似,后缀自动机定义了每个子串的endpos集合,然后按照每个子串集合划分状态,进行统计。这种方法应该可以成为一种思路吧,这个题大概就是通过最小表示法编号。
然后我们统计数量时,真正涉及计算的时候要回到集合的意义上才能统计,比如这个题就是回到了区间内的集合是全集,才能统计的数量,也只有在这个地方可以简单的进行统计和计算了。
Code:
#include <cstdio>
const int N=510;
int n,mod,po[N*N],g[N][N],f[N],d[N];
inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
#define mul(a,b) (1ll*a*b%mod)
int main()
{
scanf("%d%d",&n,&mod);
po[0]=1;for(int i=1;i<=n*n;i++) po[i]=mul(po[i-1],2);
for(int i=1;i<=n;i++) d[i]=i*(i+1)/2;
g[0][0]=1;
for(register int i=1;i<=n;i++)
for(register int j=1;j<=i;j++)
{
g[i][j]=g[i-1][j-1];
for(register int k=0;k<=i-2;k++)
g[i][j]=add(g[i][j],mul(g[i-k-2][j-1],po[d[k]]));
}
for(register int i=1;i<=n;i++)
{
f[i]=po[d[i]];
for(register int j=1;j<i;j++)
f[i]=add(f[i],mod-mul(f[j],g[i][j]));
}
printf("%d\n",f[n]);
return 0;
}
2019.1.8
A guess 解题报告的更多相关文章
- CH Round #56 - 国庆节欢乐赛解题报告
最近CH上的比赛很多,在此会全部写出解题报告,与大家交流一下解题方法与技巧. T1 魔幻森林 描述 Cortana来到了一片魔幻森林,这片森林可以被视作一个N*M的矩阵,矩阵中的每个位置上都长着一棵树 ...
- 二模13day1解题报告
二模13day1解题报告 T1.发射站(station) N个发射站,每个发射站有高度hi,发射信号强度vi,每个发射站的信号只会被左和右第一个比他高的收到.现在求收到信号最强的发射站. 我用了时间复 ...
- BZOJ 1051 最受欢迎的牛 解题报告
题目直接摆在这里! 1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4438 Solved: 2353[S ...
- 习题:codevs 2822 爱在心中 解题报告
这次的解题报告是有关tarjan算法的一道思维量比较大的题目(真的是原创文章,希望管理员不要再把文章移出首页). 这道题蒟蒻以前做过,但是今天由于要复习tarjan算法,于是就看到codevs分类强联 ...
- 习题:codevs 1035 火车停留解题报告
本蒟蒻又来写解题报告了.这次的题目是codevs 1035 火车停留. 题目大意就是给m个火车的到达时间.停留时间和车载货物的价值,车站有n个车道,而火车停留一次车站就会从车载货物价值中获得1%的利润 ...
- 习题: codevs 2492 上帝造题的七分钟2 解题报告
这道题是受到大犇MagHSK的启发我才得以想出来的,蒟蒻觉得自己的代码跟MagHSK大犇的代码完全比不上,所以这里蒟蒻就套用了MagHSK大犇的代码(大家可以关注下我的博客,友情链接就是大犇MagHS ...
- 习题:codevs 1519 过路费 解题报告
今天拿了这道题目练练手,感觉自己代码能力又增强了不少: 我的思路跟别人可能不一样. 首先我们很容易就能看出,我们需要的边就是最小生成树算法kruskal算法求出来的边,其余的边都可以删掉,于是就有了这 ...
- NOIP2016提高组解题报告
NOIP2016提高组解题报告 更正:NOIP day1 T2天天爱跑步 解题思路见代码. NOIP2016代码整合
- LeetCode 解题报告索引
最近在准备找工作的算法题,刷刷LeetCode,以下是我的解题报告索引,每一题几乎都有详细的说明,供各位码农参考.根据我自己做的进度持续更新中...... ...
- ACM: Just a Hook 解题报告 -线段树
E - Just a Hook Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u D ...
随机推荐
- 20155325 Exp5 MSF基础应用
目录 实验内容 遇到的问题 基础问题问答 老师!!!我实验三的C代码已经删除了,请求评分~~~ 实验内容 1.Windows服务渗透攻击--MS08-067 系统 虚拟机 参考博客 Windows X ...
- [arm学习]makefile学习总结
makefile不仅仅是一个命令的集合体,其中有一些规则是需要理解掌握的. 首先,了解makefile的规则: //-----------格式---------- 目标 : 依赖1,依赖2 (TAP键 ...
- 解决重启centos后resolv.conf总被清空的问题
解决重启centos后resolv.conf总被清空的问题 最近在机器上装了虚拟机virtualbox,然后安装了centos6.4,安装了免费主机控制面板virtualmin,在本地机器上搭建测试网 ...
- 2_C语言中的数据类型 (九)数组
1 数组 1.1 一维数组定义与使用 int array[10];//定义一个一维数组,名字叫array,一共有10个元素,每个元素都是int类型的 array[0] = ...
- CF708D Incorrect Flow
CF708D Incorrect Flow 有源汇上下界最小费用可行流.(= =) 对每条给定的边连边: 首先\(f_i\)是给定的,所以要有一条这个边而且要流满,先\(a_i-b_i\)连一条上下界 ...
- [CF1083F]The Fair Nut and Amusing Xor[差分+同余分类+根号分治+分块]
题意 给定两个长度为 \(n\) 的序列 \(\{a_i\}\) 与 \(\{b_i\}\),你需要求出它们的相似度.,我们定义这两个序列的相似度为将其中一个序列转化为另一个序列所需的最小操作次数.一 ...
- CTE 递归查询全解
TSQL脚本能实现递归查询,用户使用共用表表达式 CTE(Common Table Expression),只需要编写少量的代码,就能实现递归查询.本文详细介绍CTE递归调用的特性和使用示例,递归查询 ...
- Android Studio Xposed模块编写(一)
1.环境说明 本文主要参考https://my.oschina.net/wisedream/blog/471292?fromerr=rNPFQidG的内容,自己实现了一遍,侵权请告知 已经安装xpos ...
- REST-framework快速构建API--四部曲
代码目录结构: 一.使用原生APIView 使用rest-framework原生的APIView实现过程: 以url(r'^books/$', views.BookView.as_view(),nam ...
- let和const----你所不知道的JavaScript系列(2)
let 众所周知,在ES6之前,声明变量的关键字就只有var.var 声明变量要么是全局的,要么是函数级的,而无法是块级的. var a=1; console.log(a); console.log( ...