[八省联考2018]林克卡特树lct

一看这种题就不是lct。。。

除了直径好拿分,别的都难做。

所以必须转化

突破口在于:连“0”边

对于k=0,我们求直径

k=1,对于(p,q)一定是从p出发,走一段原树,走0(或不走),再走一段原树,所以要最大化原树的值的和。

选择最大两条 点不相交的链(注意:可以选择一个点,这时候链长为0)。然后一定可以首尾连起来得到答案

k更大的时候,选择最大的k+1条两两不相交的路径,然后一定存在方案使之连接起来,一定是最优解。(因为如果实际上最优解不用走k条0边,一定会把这些0边随便连一连废掉,对应选择一个点作为链)

所以,求最大的k+1条两两点不相交的路径。

点不相交,每次贪心取直径然后取反其实不好做。而且显然扩展性太差

树形DP

f[x][0/1/2][k]表示x为根的子树,从下面连接到x的度数是0/1/2,用k条链的最优解。特别地,从x开始往上的链归入f[x][1][*]。

转移时候枚举和当前儿子怎么连就好了。

看上去已经不能优化了。

然鹅

可以发现,如果f[x]函数表示选择x个链的最大总和

这是一个上凸函数!

就可以WQS二分了

具体地,每个链的额外花费mid的代价

然后求全局的最高点。没了k的限制就好做了

f[x][0/1/2]

(PS:

1.这个题如果连接的新边不是0应该也可以,但是必须是正数,负数的话转化就不对了,不一定走K次新边最优

2.如果k是一个区间也许也可以?

代码:

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=3e5+;
const ll inf=0x3f3f3f3f3f3f3f3f;
int n,k;
int b[N][];
struct node{
int nxt,to;
ll val;
}e[*N];
int hd[N],cnt;
void add(int x,int y,ll z){
e[++cnt].nxt=hd[x];
e[cnt].val=z;
e[cnt].to=y;
hd[x]=cnt;
}
struct dp{
ll v;
int c;
dp(){}
dp(ll a,int b){
v=a;c=b;
}
dp operator +(const dp &b){
return dp(v+b.v,c+b.c);
}
bool friend operator <(dp a,dp b){
return (a.v<b.v||(a.v==b.v&&a.c<b.c));
}
void clear(){
v=-inf;c=-0x3f3f3f3f;
}
}f[N][];
ll sum;
void dfs(int x,int fa,ll mid){
f[x][].clear();
f[x][].clear();
f[x][].v=,f[x][].c=;
for(reg i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
if(y==fa) continue;
dfs(y,x,mid);
f[x][]=max(f[x][]+f[y][],f[x][]+f[y][]+dp(e[i].val+mid,-));
f[x][]=max(f[x][]+f[y][],f[x][]+f[y][]+dp(e[i].val,));
f[x][]=f[x][]+f[y][];
}
f[x][]=max(f[x][],f[x][]+dp(-mid,));
f[x][]=max(f[x][],max(f[x][],f[x][]));
}
int check(ll mid){
memset(hd,,sizeof hd);cnt=;
sum=;
for(reg i=;i<n;++i){
add(b[i][],b[i][],b[i][]);
add(b[i][],b[i][],b[i][]);
}
dfs(,,mid);
// for(reg i=1;i<=n;++i){
// cout<<" i "<<i<<" : "<<f[i][0].v<<" "<<f[i][0].c<<endl;
// }
sum=f[][].v;
// cout<<" mid "<<mid<<" :: "<<sum<<" "<<f[1][0].c<<endl;
return f[][].c;
}
int main(){
rd(n);rd(k);
++k;
ll l=,r=;
for(reg i=;i<n;++i){
rd(b[i][]);rd(b[i][]);rd(b[i][]);
r+=abs(b[i][]);
}l=-r;
ll ans=-;
while(l<=r){
ll mid=(l+r)/;
if(check(mid)>=k) ans=mid,l=mid+;
else r=mid-;
}
int haha=check(ans);
printf("%lld\n",sum+(ll)k*ans);
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2019/2/20 15:23:18
*/

总结:

1.转化为k+1个链

2.树形dp(经典问题)

3.凸函数,WQS二分

[八省联考2018]林克卡特树lct——WQS二分的更多相关文章

  1. LuoguP4383 [八省联考2018]林克卡特树lct

    LuoguP4383 [八省联考2018]林克卡特树lct https://www.luogu.org/problemnew/show/P4383 分析: 题意等价于选择\(K\)条点不相交的链,使得 ...

  2. 洛谷P4383 [八省联考2018]林克卡特树lct(DP凸优化/wqs二分)

    题目描述 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的迷你挑战. 游戏中有一个叫做“LCT” 的挑 ...

  3. [九省联考2018]林克卡特树(DP+wqs二分)

    对于k=0和k=1的点,可以直接求树的直径. 然后对于60分,有一个重要的转化:就是求在树中找出k+1条点不相交的链后的最大连续边权和. 这个DP就好.$O(nk^2)$ 然后我们完全不可以想到,将b ...

  4. 洛谷.4383.[八省联考2018]林克卡特树lct(树形DP 带权二分)

    题目链接 \(Description\) 给定一棵边带权的树.求删掉K条边.再连上K条权为0的边后,新树的最大直径. \(n,K\leq3\times10^5\). \(Solution\) 题目可以 ...

  5. P4383 [八省联考2018]林克卡特树lct 树形DP+凸优化/带权二分

    $ \color{#0066ff}{ 题目描述 }$ 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的 ...

  6. luogu4383 [八省联考2018]林克卡特树(带权二分+dp)

    link 题目大意:给定你 n 个点的一棵树 (边有边权,边权有正负) 你需要移除 k 条边,并连接 k 条权值为 0 的边,使得连接之后树的直径最大 题解: 根据 [POI2015]MOD 那道题, ...

  7. [八省联考2018]林克卡特树lct

    题解: zhcs的那个题基本上就是抄这个题的,不过背包的分数变成了70分.. 不过得分开来写..因为两个数组不能同时满足 背包的话就是 $f[i][j][0/1]$表示考虑i子树,取j条链,能不能向上 ...

  8. 洛谷 4383 [八省联考2018]林克卡特树lct——树形DP+带权二分

    题目:https://www.luogu.org/problemnew/show/P4383 关于带权二分:https://www.cnblogs.com/flashhu/p/9480669.html ...

  9. [BZOJ5252][八省联考2018]林克卡特树lct

    bzoj(上面可以下数据) luogu description 在树上选出\(k\)条点不相交的链,求最大权值. 一个点也算是一条退化的链,其权值为\(0\). sol 别问我为什么现在才写这题 首先 ...

随机推荐

  1. 20155204《网络对抗》Exp9 Web安全基础实践

    20155204<网络对抗>Exp9 Web安全基础实践 一.基础问题回答 SQL注入攻击原理,如何防御? 原理: SQL注入即是指web应用程序对用户输入数据的合法性没有判断,攻击者可以 ...

  2. 20155233 刘高乐 Exp9 Web安全基础

    WebGoat 输入java -jar webgoat-container-7.1-exec.jar 在浏览器输入localhost:8080/WebGoat,进入WebGoat开始实验 Cross- ...

  3. Exp5

    实验 实验1 - 直接攻击系统开启的漏洞服务,获取系统控制权 1.选择要使用的模块 在这里我选择的模块是ms08_067 首先我们需要查询一下有关ms08_067所在模块的相关信息 search ms ...

  4. Selenium 爬取全国水质周报Word

    很久没写爬虫了 ,昨天有个学姐说需要爬取水质的一些数据,给了个网站( http://xxfb.hydroinfo.gov.cn/ssIndex.html?type=2&tdsourcetag= ...

  5. EZ 2018 04 01 ZJOI2018模拟赛04.01

    现在开始填以前的坑 这次老叶强制我们打一下这次省选题,然后我已经做好了掉Rating到死的准备 然后考完--莫名涨了 Orz 题目链接 由于很多东西我都不会,所以详细请看:dalao的题解 T1 我T ...

  6. [2016北京集训测试赛15]statement-[线段树+拆环]

    Description Solution 由于题目要求,将a[i]->b[i](边权为i)后所得的图应该是由森林和环套树组合而成. 假如是树形结构,所有的t[i]就直接在线段树t[i]点的dfs ...

  7. libgdx学习记录5——演员Actor

    Actor也是libgdx中非常重要的一个元素,一般与stage配合一起使用.Actor能够设置大小,位置,旋转和动画等. 我们自定义的Actor一般需要继承于Actor,并且重写其中的act和dra ...

  8. CSS快速入门-前端布局2(唯品会1)

    上一篇我模仿了抽屉网站,这一节我来对唯品会主页进行模仿. 我觉得写一个主页大概思路如下: 1.确定整体布局方式:(html框架布局) 2.针对每一块进行细化,尽量做到模块化.(css) 3.加上特效效 ...

  9. JQuery快速入门-选择器

    JQuery选择器 JQuery 选择器继承了CSS 与Path 语言的部分语法,允许通过标签名.属性名或内容对DOM 元素进行快速.准确的选择,而不必担心浏览器的兼容性,通过jQuery 选择器对页 ...

  10. Deferred Shading 延迟着色(翻译)

    原文地址:https://en.wikipedia.org/wiki/Deferred_shading 在3D计算机图形学领域,deferred shading 是一种屏幕空间着色技术.它被称为Def ...