题目链接:

洛谷

BZOJ

题目大意:有两个长为 $n$ 的序列 $a,b$,问有多少种重排 $b$ 的方式,使得满足 $a_i>b_i$ 的 $i$ 的个数比满足 $a_i<b_i$ 的 $i$ 的个数恰好多 $k$ 个。答案对 $10^9+9$ 取模。

$1\le n\le 2000,0\le k\le n$。保证 $a,b$ 中没有相同的数。


首先根据小学数学知识可知,$a_i>b_i$ 的个数应该是 $\frac{n+k}{2}$。如果 $n+k$ 不是偶数那么就无解。

那么就可以DP了。首先将 $a$ 和 $b$ 分别排序,令 $c_i$ 表示 $b$ 中 $<a_i$ 的数的个数。

设 $dp_{i,j}$ 表示在前 $i$ 个 $a$ 中,选了 $j$ 个 $a$ 和 $j$ 个 $b$ 并凑出了恰好 $j$ 对满足 $a>b$ 的对的方案数,那么有:

$dp_{i,0}=1$

$dp_{i,j}=dp_{i-1,j}+dp_{i-1,j-1}(c_i-j+1)$

解释一下第二句,前半部分是表示 $a_i$ 不找,后半部分表示 $a_i$ 找。本来可以有 $c_i$ 个 $b$ 可以选,但是前面 $j-1$ 个 $i$ 已经选了 $j-1$ 个了。又因为 $a$ 从小到大,所以还可以选 $c_i-j+1$ 个。

令 $f_k$ 为恰好 $k$ 对数的答案, $g_k$ 为至少 $k$ 对数的答案。

我们发现 $g_k$ 比较好算,$g_k=dp_{n,k}(n-k)!$。因为选出了 $k$ 对之后,剩下的可以随便搭配。

然后又可以发现 $g_k=\sum\limits^n_{i=k}{i\choose k}f_i$。为什么???因为这题标签是二项式反演啊……(smg……)

好吧,我不会证,直接用吧(逃

那么 $f_k=\sum\limits^n_{i=k}(-1)^{i-k}{i\choose k}g_i$。

时间复杂度 $O(n^2)$。


upd:问了PBdalao为什么是组合数,把他的话放这吧:

对于 $j$ 的一个方案,它在 $i$ 中必然是这么统计的:有 $i$ 个是DP得到的,另外 $j-i$ 个是后面乱搞得到的。

所以 $j$ 中每一组 $i$ 都被统计了一次,最后就被统计了 $j\choose i$ 次。

(很有道理,不是吗?)


代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=,mod=;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
char ch=getchar();int x=,f=;
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int n,k,a[maxn],b[maxn],c[maxn],dp[maxn][maxn],fac[maxn],inv[maxn],invfac[maxn];
inline int C(int n,int m){
return 1ll*fac[n]*invfac[m]%mod*invfac[n-m]%mod;
}
inline int g(int x){
return 1ll*dp[n][x]*fac[n-x]%mod;
}
inline int f(int x){
int ans=;
FOR(i,x,n){
int v=1ll*C(i,x)*g(i)%mod;
if((i-x)&) ans=(ans-v+mod)%mod;
else ans=(ans+v)%mod;
}
return ans;
}
int main(){
n=read();k=read();
if((n+k)&) return puts(""),;
k=(n+k)>>;
fac[]=fac[]=inv[]=invfac[]=invfac[]=;
FOR(i,,n){
fac[i]=1ll*fac[i-]*i%mod;
inv[i]=mod-1ll*(mod/i)*inv[mod%i]%mod;
invfac[i]=1ll*invfac[i-]*inv[i]%mod;
}
FOR(i,,n) a[i]=read();
FOR(i,,n) b[i]=read();
sort(a+,a+n+);sort(b+,b+n+);
int cur=;
FOR(i,,n){
while(cur<=n && b[cur]<a[i]) cur++;
c[i]=cur-;
}
dp[][]=;
FOR(i,,n){
dp[i][]=dp[i-][];
FOR(j,,i) dp[i][j]=(dp[i-][j]+1ll*dp[i-][j-]*(c[i]-j+))%mod;
}
printf("%d\n",f(k));
}

二项式反演

洛谷4859 BZOJ3622 已经没什么好害怕的了(DP,二项式反演)的更多相关文章

  1. 洛谷P4859 已经没有什么好害怕的了 [DP,容斥]

    传送门 思路 大佬都说这是套路题--嘤嘤嘤我又被吊打了\(Q\omega Q\) 显然,这题是要\(DP\)的. 首先思考一下性质: 为了方便,下面令\(k=\frac{n+k}{2}\),即有恰好\ ...

  2. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  3. 洛谷 P4859 已经没有什么好害怕的了 解题报告

    已经没有什么好害怕的了 题目描述 已经使\(\tt{Modoka}\)有签订契约,和自己一起战斗的想法后,\(\tt{Mami}\)忽然感到自己不再是孤单一人了呢. 于是,之前的谨慎的战斗作风也消失了 ...

  4. 洛谷P3959 宝藏(NOIP2017)(状压DP,子集DP)

    洛谷题目传送门 Dalao的题解多数是什么模拟退火.DFS剪枝.\(O(3^nn^2)\)的状压DP之类.蒟蒻尝试着把状压改进了一下使复杂度降到\(O(3^nn)\). 考虑到每条边的贡献跟它所在的层 ...

  5. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...

  6. 【题解】洛谷P1541 [NOIP2010TG] 乌龟棋(类似背包的DP)

    题目来源:洛谷P1541 思路 类似背包的题 总之就是四种卡牌取的先后顺序不同导致的最终ans不同 所以我们用一个四维数组每一维分别表示第几种取了几张的最大分数 然后就是简单DP解决 代码 #incl ...

  7. BZOJ3622 已经没有什么好害怕的了 【dp + 二项式反演】

    题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{ ...

  8. 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP

    洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...

  9. 洛谷P1441 砝码称重(搜索,dfs+dp)

    洛谷P1441 砝码称重 \(n\) 的范围为 \(n \le 20\) ,\(m\) 的范围为 \(m \le 4\) . 暴力遍历每一种砝码去除情况,共有 \(n^m\) 种情况. 对于剩余砝码求 ...

随机推荐

  1. 一些IT中的工具介绍

    1. 史上最全github使用方法:github入门到精通 2. Git教程 3. GIT与GitHub使用简介 简单来说,git是一种版本控制系统.跟svn.cvs是同级的概念.github是一个网 ...

  2. BERT总结:最先进的NLP预训练技术

    BERT(Bidirectional Encoder Representations from Transformers)是谷歌AI研究人员最近发表的一篇论文:BERT: Pre-training o ...

  3. 未能使用“Csc”任务的输入参数初始化该任务

    今天.NetCore2.1版本,建立Asp.net Core web应用程序项目时,报以下错误: 未能使用“Csc”任务的输入参数初始化该任务. “Csc”任务不支持“SharedCompilatio ...

  4. SQL Server Integration Services的10大最佳实践

    原文出处:https://blogs.msdn.microsoft.com/sqlcat/2013/09/16/top-10-sql-server-integration-services-best- ...

  5. ReactJS实用技巧(1):JSX与HTML的那些不同

    在项目中使用ReactJS也已经有大半年了,收获很多也踩过不少坑.不想把这个系列写成抄书似的罗列,旨在总结些常用的技巧及常见的坑,以帮助初心者快速入门,想系统学习的同学还是多阅读文档. JSX本质上与 ...

  6. 学习git 新手。这个写的不错

    转自:https://www.cnblogs.com/wupeiqi/p/7295372.html 版本控制 说到版本控制,脑海里总会浮现大学毕业是写毕业论文的场景,你电脑上的毕业论文一定出现过这番景 ...

  7. [DEBUG]椭圆的中点Bresenham算法边缘绘制出现错误

    在使用椭圆的中点Bresenham算法绘制椭圆时, 当椭圆足够大时, 椭圆的边缘会出现下面这种情况. 出错原因: 将a, b声明为了int类型, 导致中点判别式中发生溢出 关注后面的a*b*a*b当a ...

  8. 使用pyspark模仿sqoop从oracle导数据到hive的主要功能(自动建表,分区导入,增量,解决数据换行符问题)

    最近公司开始做大数据项目,让我使用sqoop(1.6.4版本)导数据进行数据分析计算,然而当我们将所有的工作流都放到azkaban上时整个流程跑完需要花费13分钟,而其中导数据(增量)就占了4分钟左右 ...

  9. java后台面试知识点总结

    本文主要记录在准备面试过程中遇到的一些基本知识点(持续更新) 一.Java基础知识 1.抽象类和接口的区别 接口和抽象类中都可以定义变量,但是接口中定义的必须是公共的.静态的.Final的,抽象类中的 ...

  10. linux一切皆文件之块设备文件(四)

    一.知识准备 1.在linux中,一切皆为文件,所有不同种类的类型都被抽象成文件(比如:块设备,socket套接字,pipe队列) 2.操作这些不同的类型就像操作文件一样,比如增删改查等 3.块设备是 ...