题目链接:

洛谷

BZOJ

题目大意:有两个长为 $n$ 的序列 $a,b$,问有多少种重排 $b$ 的方式,使得满足 $a_i>b_i$ 的 $i$ 的个数比满足 $a_i<b_i$ 的 $i$ 的个数恰好多 $k$ 个。答案对 $10^9+9$ 取模。

$1\le n\le 2000,0\le k\le n$。保证 $a,b$ 中没有相同的数。


首先根据小学数学知识可知,$a_i>b_i$ 的个数应该是 $\frac{n+k}{2}$。如果 $n+k$ 不是偶数那么就无解。

那么就可以DP了。首先将 $a$ 和 $b$ 分别排序,令 $c_i$ 表示 $b$ 中 $<a_i$ 的数的个数。

设 $dp_{i,j}$ 表示在前 $i$ 个 $a$ 中,选了 $j$ 个 $a$ 和 $j$ 个 $b$ 并凑出了恰好 $j$ 对满足 $a>b$ 的对的方案数,那么有:

$dp_{i,0}=1$

$dp_{i,j}=dp_{i-1,j}+dp_{i-1,j-1}(c_i-j+1)$

解释一下第二句,前半部分是表示 $a_i$ 不找,后半部分表示 $a_i$ 找。本来可以有 $c_i$ 个 $b$ 可以选,但是前面 $j-1$ 个 $i$ 已经选了 $j-1$ 个了。又因为 $a$ 从小到大,所以还可以选 $c_i-j+1$ 个。

令 $f_k$ 为恰好 $k$ 对数的答案, $g_k$ 为至少 $k$ 对数的答案。

我们发现 $g_k$ 比较好算,$g_k=dp_{n,k}(n-k)!$。因为选出了 $k$ 对之后,剩下的可以随便搭配。

然后又可以发现 $g_k=\sum\limits^n_{i=k}{i\choose k}f_i$。为什么???因为这题标签是二项式反演啊……(smg……)

好吧,我不会证,直接用吧(逃

那么 $f_k=\sum\limits^n_{i=k}(-1)^{i-k}{i\choose k}g_i$。

时间复杂度 $O(n^2)$。


upd:问了PBdalao为什么是组合数,把他的话放这吧:

对于 $j$ 的一个方案,它在 $i$ 中必然是这么统计的:有 $i$ 个是DP得到的,另外 $j-i$ 个是后面乱搞得到的。

所以 $j$ 中每一组 $i$ 都被统计了一次,最后就被统计了 $j\choose i$ 次。

(很有道理,不是吗?)


代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=,mod=;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
char ch=getchar();int x=,f=;
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int n,k,a[maxn],b[maxn],c[maxn],dp[maxn][maxn],fac[maxn],inv[maxn],invfac[maxn];
inline int C(int n,int m){
return 1ll*fac[n]*invfac[m]%mod*invfac[n-m]%mod;
}
inline int g(int x){
return 1ll*dp[n][x]*fac[n-x]%mod;
}
inline int f(int x){
int ans=;
FOR(i,x,n){
int v=1ll*C(i,x)*g(i)%mod;
if((i-x)&) ans=(ans-v+mod)%mod;
else ans=(ans+v)%mod;
}
return ans;
}
int main(){
n=read();k=read();
if((n+k)&) return puts(""),;
k=(n+k)>>;
fac[]=fac[]=inv[]=invfac[]=invfac[]=;
FOR(i,,n){
fac[i]=1ll*fac[i-]*i%mod;
inv[i]=mod-1ll*(mod/i)*inv[mod%i]%mod;
invfac[i]=1ll*invfac[i-]*inv[i]%mod;
}
FOR(i,,n) a[i]=read();
FOR(i,,n) b[i]=read();
sort(a+,a+n+);sort(b+,b+n+);
int cur=;
FOR(i,,n){
while(cur<=n && b[cur]<a[i]) cur++;
c[i]=cur-;
}
dp[][]=;
FOR(i,,n){
dp[i][]=dp[i-][];
FOR(j,,i) dp[i][j]=(dp[i-][j]+1ll*dp[i-][j-]*(c[i]-j+))%mod;
}
printf("%d\n",f(k));
}

二项式反演

洛谷4859 BZOJ3622 已经没什么好害怕的了(DP,二项式反演)的更多相关文章

  1. 洛谷P4859 已经没有什么好害怕的了 [DP,容斥]

    传送门 思路 大佬都说这是套路题--嘤嘤嘤我又被吊打了\(Q\omega Q\) 显然,这题是要\(DP\)的. 首先思考一下性质: 为了方便,下面令\(k=\frac{n+k}{2}\),即有恰好\ ...

  2. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  3. 洛谷 P4859 已经没有什么好害怕的了 解题报告

    已经没有什么好害怕的了 题目描述 已经使\(\tt{Modoka}\)有签订契约,和自己一起战斗的想法后,\(\tt{Mami}\)忽然感到自己不再是孤单一人了呢. 于是,之前的谨慎的战斗作风也消失了 ...

  4. 洛谷P3959 宝藏(NOIP2017)(状压DP,子集DP)

    洛谷题目传送门 Dalao的题解多数是什么模拟退火.DFS剪枝.\(O(3^nn^2)\)的状压DP之类.蒟蒻尝试着把状压改进了一下使复杂度降到\(O(3^nn)\). 考虑到每条边的贡献跟它所在的层 ...

  5. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...

  6. 【题解】洛谷P1541 [NOIP2010TG] 乌龟棋(类似背包的DP)

    题目来源:洛谷P1541 思路 类似背包的题 总之就是四种卡牌取的先后顺序不同导致的最终ans不同 所以我们用一个四维数组每一维分别表示第几种取了几张的最大分数 然后就是简单DP解决 代码 #incl ...

  7. BZOJ3622 已经没有什么好害怕的了 【dp + 二项式反演】

    题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{ ...

  8. 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP

    洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...

  9. 洛谷P1441 砝码称重(搜索,dfs+dp)

    洛谷P1441 砝码称重 \(n\) 的范围为 \(n \le 20\) ,\(m\) 的范围为 \(m \le 4\) . 暴力遍历每一种砝码去除情况,共有 \(n^m\) 种情况. 对于剩余砝码求 ...

随机推荐

  1. 20155206 Exp5 MSF基础应用

    20155206 Exp5 MSF基础应用 基础问题 . 用自己的话解释什么是exploit,payload,encode . exploit:这个词本身只是利用,但是它在黑客眼里就是漏洞利用.有漏洞 ...

  2. sprintboot 和swagger2整合生成文档

    1.创建springboot 工程 2.引入maven依赖 <dependency> <groupId>io.springfox</groupId> <art ...

  3. [Zlib]_[初级]_[使用zlib库压缩和解压STL string]

    场景 1.一般在使用文本json传输数据, 数据量特别大时,传输的过程就特别耗时, 因为带宽或者socket的缓存是有限制的, 数据量越大, 传输时间就越长. 网站一般使用gzip来压缩成二进制. 说 ...

  4. C# DataGridView控件禁止拷贝数据

    代码如下(没错,就一行): dataGridView1.ClipboardCopyMode=DataGridViewClipboardCopyMode.Disable; 当然其它方式很多,但是不如来个 ...

  5. C++ STL 学习笔记__(8)map和multimap容器

    10.2.9 Map和multimap容器 map/multimap的简介 ²  map是标准的关联式容器,一个map是一个键值对序列,即(key,value)对.它提供基于key的快速检索能力. ² ...

  6. 【原创】梵高油画用深度卷积神经网络迭代10万次是什么效果? A neural style of convolutional neural networks

    作为一个脱离了低级趣味的码农,春节假期闲来无事,决定做一些有意思的事情打发时间,碰巧看到这篇论文: A neural style of convolutional neural networks,译作 ...

  7. 关于UNITY学习,给新生建议

    没有不可能,只有不努力. 本人自学UNITY,实力不敢称最好,但绝对不是小白,自己独立做出过游戏,AR.(用C#) 1. 导入模型一定要注意坐标,否则会很麻烦.本人因为这个吃了很多盐 2. 学unit ...

  8. PAT甲题题解-1111. Online Map (30)-PAT甲级真题(模板题,两次Dijkstra,同时记下最短路径)

    题意:给了图,以及s和t,让你求s到t花费的最短路程.最短时间,以及输出对应的路径.   对于最短路程,如果路程一样,输出时间最少的. 对于最短时间,如果时间一样,输出节点数最少的.   如果最短路程 ...

  9. C++ 派生类成员的访问属性

    派生类成员的访问属性: C++继承方式总共分为以下几种:public.private.protected三种(它们直接影响到派生类的成员.及其对象对基类成员访问的规则).(1)public(公有继承) ...

  10. 作业要求20160901 从edu.cnblogs.com中抄过来的,备忘

    [已完成] 杨贵福 发布于 2016-09-01 21:51 开通技术博客,博客园 cnblogs 关注 杨贵福 younggift,回贴 "构建之法东北师大站,继续 2016秋" ...