洛谷4859 BZOJ3622 已经没什么好害怕的了(DP,二项式反演)
题目链接:
题目大意:有两个长为 $n$ 的序列 $a,b$,问有多少种重排 $b$ 的方式,使得满足 $a_i>b_i$ 的 $i$ 的个数比满足 $a_i<b_i$ 的 $i$ 的个数恰好多 $k$ 个。答案对 $10^9+9$ 取模。
$1\le n\le 2000,0\le k\le n$。保证 $a,b$ 中没有相同的数。
首先根据小学数学知识可知,$a_i>b_i$ 的个数应该是 $\frac{n+k}{2}$。如果 $n+k$ 不是偶数那么就无解。
那么就可以DP了。首先将 $a$ 和 $b$ 分别排序,令 $c_i$ 表示 $b$ 中 $<a_i$ 的数的个数。
设 $dp_{i,j}$ 表示在前 $i$ 个 $a$ 中,选了 $j$ 个 $a$ 和 $j$ 个 $b$ 并凑出了恰好 $j$ 对满足 $a>b$ 的对的方案数,那么有:
$dp_{i,0}=1$
$dp_{i,j}=dp_{i-1,j}+dp_{i-1,j-1}(c_i-j+1)$
解释一下第二句,前半部分是表示 $a_i$ 不找,后半部分表示 $a_i$ 找。本来可以有 $c_i$ 个 $b$ 可以选,但是前面 $j-1$ 个 $i$ 已经选了 $j-1$ 个了。又因为 $a$ 从小到大,所以还可以选 $c_i-j+1$ 个。
令 $f_k$ 为恰好 $k$ 对数的答案, $g_k$ 为至少 $k$ 对数的答案。
我们发现 $g_k$ 比较好算,$g_k=dp_{n,k}(n-k)!$。因为选出了 $k$ 对之后,剩下的可以随便搭配。
然后又可以发现 $g_k=\sum\limits^n_{i=k}{i\choose k}f_i$。为什么???因为这题标签是二项式反演啊……(smg……)
好吧,我不会证,直接用吧(逃
那么 $f_k=\sum\limits^n_{i=k}(-1)^{i-k}{i\choose k}g_i$。
时间复杂度 $O(n^2)$。
upd:问了PBdalao为什么是组合数,把他的话放这吧:
对于 $j$ 的一个方案,它在 $i$ 中必然是这么统计的:有 $i$ 个是DP得到的,另外 $j-i$ 个是后面乱搞得到的。
所以 $j$ 中每一组 $i$ 都被统计了一次,最后就被统计了 $j\choose i$ 次。
(很有道理,不是吗?)
代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn=,mod=;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
char ch=getchar();int x=,f=;
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int n,k,a[maxn],b[maxn],c[maxn],dp[maxn][maxn],fac[maxn],inv[maxn],invfac[maxn];
inline int C(int n,int m){
return 1ll*fac[n]*invfac[m]%mod*invfac[n-m]%mod;
}
inline int g(int x){
return 1ll*dp[n][x]*fac[n-x]%mod;
}
inline int f(int x){
int ans=;
FOR(i,x,n){
int v=1ll*C(i,x)*g(i)%mod;
if((i-x)&) ans=(ans-v+mod)%mod;
else ans=(ans+v)%mod;
}
return ans;
}
int main(){
n=read();k=read();
if((n+k)&) return puts(""),;
k=(n+k)>>;
fac[]=fac[]=inv[]=invfac[]=invfac[]=;
FOR(i,,n){
fac[i]=1ll*fac[i-]*i%mod;
inv[i]=mod-1ll*(mod/i)*inv[mod%i]%mod;
invfac[i]=1ll*invfac[i-]*inv[i]%mod;
}
FOR(i,,n) a[i]=read();
FOR(i,,n) b[i]=read();
sort(a+,a+n+);sort(b+,b+n+);
int cur=;
FOR(i,,n){
while(cur<=n && b[cur]<a[i]) cur++;
c[i]=cur-;
}
dp[][]=;
FOR(i,,n){
dp[i][]=dp[i-][];
FOR(j,,i) dp[i][j]=(dp[i-][j]+1ll*dp[i-][j-]*(c[i]-j+))%mod;
}
printf("%d\n",f(k));
}
二项式反演
洛谷4859 BZOJ3622 已经没什么好害怕的了(DP,二项式反演)的更多相关文章
- 洛谷P4859 已经没有什么好害怕的了 [DP,容斥]
传送门 思路 大佬都说这是套路题--嘤嘤嘤我又被吊打了\(Q\omega Q\) 显然,这题是要\(DP\)的. 首先思考一下性质: 为了方便,下面令\(k=\frac{n+k}{2}\),即有恰好\ ...
- 题解-洛谷P4859 已经没有什么好害怕的了
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...
- 洛谷 P4859 已经没有什么好害怕的了 解题报告
已经没有什么好害怕的了 题目描述 已经使\(\tt{Modoka}\)有签订契约,和自己一起战斗的想法后,\(\tt{Mami}\)忽然感到自己不再是孤单一人了呢. 于是,之前的谨慎的战斗作风也消失了 ...
- 洛谷P3959 宝藏(NOIP2017)(状压DP,子集DP)
洛谷题目传送门 Dalao的题解多数是什么模拟退火.DFS剪枝.\(O(3^nn^2)\)的状压DP之类.蒟蒻尝试着把状压改进了一下使复杂度降到\(O(3^nn)\). 考虑到每条边的贡献跟它所在的层 ...
- BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】
题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...
- 【题解】洛谷P1541 [NOIP2010TG] 乌龟棋(类似背包的DP)
题目来源:洛谷P1541 思路 类似背包的题 总之就是四种卡牌取的先后顺序不同导致的最终ans不同 所以我们用一个四维数组每一维分别表示第几种取了几张的最大分数 然后就是简单DP解决 代码 #incl ...
- BZOJ3622 已经没有什么好害怕的了 【dp + 二项式反演】
题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{ ...
- 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP
洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...
- 洛谷P1441 砝码称重(搜索,dfs+dp)
洛谷P1441 砝码称重 \(n\) 的范围为 \(n \le 20\) ,\(m\) 的范围为 \(m \le 4\) . 暴力遍历每一种砝码去除情况,共有 \(n^m\) 种情况. 对于剩余砝码求 ...
随机推荐
- Elasticsearch 简介
1. 背景 Elasticsearch 在公司的使用越来越广,很多同事之前并没有接触过 Elasticsearch,所以,最近在公司准备了一次关于 Elasticsearch 的分享,整理成此文.此文 ...
- 大数据入门第十二天——sqoop入门
一.概述 1.sqoop是什么 从其官网:http://sqoop.apache.org/ Apache Sqoop(TM) is a tool designed for efficiently tr ...
- 20155217《网络对抗》Exp02 后门原理与实践
20155217<网络对抗>Exp02 后门原理与实践 实验要求 使用netcat获取主机操作Shell,cron启动. 使用socat获取主机操作Shell,任务计划启动. 使用MSF ...
- 汇编 EAX,EBX,ECX,EDX,寄存器
知识点: 寄存器EAX 寄存器AX 寄存器AH 寄存器AL 一.EAX与AX,AH,AL关系图 一格表示一字节 #include <Windows.h> int _tmain(int ar ...
- 不再迷惑,无值和NULL值
在关系型数据库的世界中,无值和NULL值的区别是什么?一直被这个问题困扰着,甚至在写TSQL脚本时,战战兢兢,如履薄冰,害怕因为自己的一知半解,挖了坑,贻害后来人,于是,本着上下求索,不达通幽不罢休的 ...
- json-server+mockjs 模拟REST接口
前言: 项目开发中,影响项目进程的常常是由于在前后端数据交互的开发流程中停滞,前端完成静态页面的开发后,后端迟迟未给到接口.而现在,我们就可以通过根据后端接口字段,建立一个REST风格的API接口,进 ...
- 巧用cheerio重构grunt-inline
grunt-inline是楼主之前写的一个插件,主要作用是把页面带了__inline标记的资源内嵌到html页面去.比如下面的这个script标签. <script src="main ...
- Ubuntu 开机自动启动
# 开机启动 2018-12-13在etc目录下建立loraserver.sh文件,[**注意**:设置脚本的运行属性]其内容为 #!/bin/bash cd /home/zqkj/loraserve ...
- 容器flappybird游戏——图文操作指引贴
第一步:打开华为云容器引擎产品首页,点击免费体验馆 第二步:进入免费体验馆,点击体验按钮,获得3天免费集群 第三步:创建免费集群完成后,进入产品console页,如图所示: 第四步:如 ...
- Centos6.5下进行PHP版本升级
http://blog.csdn.net/aliveqf/article/details/70444387