BZOJ 3609: [Heoi2014]人人尽说江南好
3609: [Heoi2014]人人尽说江南好
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 470 Solved: 336
[Submit][Status][Discuss]
Description
小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),
Input
Output
输出 T 行,每行为 0 或 1,如果为 0 意为小 Z(即先手)会取得胜利,为 1 则为后
Sample Input
7 3
1 5
4 3
6 1
2 2
Sample Output
1
1
1
0
HINT
100%的数据, n,m<=1000000000, T<=100
Source
博弈水题
#include <cstdio> signed main(void)
{
int cas, n, m; scanf("%d", &cas); while (cas--)
{
scanf("%d%d", &n, &m); int cnt = (n + m - ) / m; if ((n - cnt) & )
puts("");
else
puts("");
}
}
@Author: YouSiki
BZOJ 3609: [Heoi2014]人人尽说江南好的更多相关文章
- bzoj 3609: [Heoi2014]人人尽说江南好【博弈论】
参考:https://blog.csdn.net/Izumi_Hanako/article/details/80189596 胜负和操作次数有关,先手胜为奇,所以先手期望奇数后手期望偶数,最后一定能达 ...
- BZOJ3609 Heoi2014 人人尽说江南好【推理+结论】
BZOJ3609 Heoi2014 人人尽说江南好 Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时 ...
- bzoj3609 [Heoi2014]人人尽说江南好 博弈
[Heoi2014]人人尽说江南好 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 581 Solved: 420[Submit][Status][D ...
- [HEOI2014] 人人尽说江南好
[HEOI2014] 人人尽说江南好 题目大意:一个博弈游戏,地上\(n\)堆石子,每堆石子有\(1\)个,每次可以合并任意两个石子堆\(a,b\),要求\(a + b \leq m\),问先手赢还是 ...
- [BZOJ3609][Heoi2014]人人尽说江南好 结论题
Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要 ...
- P4101 [HEOI2014]人人尽说江南好
题目描述 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要边玩游戏边填词的,比如这 ...
- bzoj3609 [Heoi2014]人人尽说江南好
Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要边玩 ...
- luoguP4101 [HEOI2014]人人尽说江南好 结论
题目大意: 给定\(n\)堆初始大小为\(1\)的石堆 每次选择两堆石子合并,特别的,合并之后的两堆石子不能\(> m\) 询问先手必赢? 不妨设我们是先手,且最后我们必胜 我们考虑构造局面\( ...
- [HEOI2014]人人尽说江南好 博弈论
题面 题面 题解 感觉这题挺神仙的,根据一些奇奇怪怪的证明可以得到: 最后的终止状态一定是\(m, m, m, m, .... n \% m\). 因此我们可以O(1)计算到终止状态所需步数,然后根据 ...
随机推荐
- 20155206赵飞 Exp1PC平台逆向破解及Bof基础实践
实验一 逆向及Bof基础 1.掌握NOP, JNE, JE, JMP, CMP汇编指令的机器码 NOP汇编指令的机器码是"90" JNE汇编指令的机器码是"75" ...
- 20155216 Exp4 恶意代码分析
20155216 Exp4 恶意代码分析 实践内容 使用schtasks指令监控系统运行 先在C盘目录下建立一个netstatlog.bat文件和netstatlog.txt文件,将记录的联网结果格式 ...
- 20155227辜彦霖《基于Cortex-M4的UCOSIII的应用》课程设计个人报告
20155227辜彦霖<基于Cortex-M4的UCOSIII的应用>课程设计个人报告 一.个人贡献 参与课设题目讨论及完成全过程: 资料收集: 负责主要代码调试: 撰写小组结题报告. 二 ...
- python 回溯法 子集树模板 系列 —— 2、迷宫问题
问题 给定一个迷宫,入口已知.问是否有路径从入口到出口,若有则输出一条这样的路径.注意移动可以从上.下.左.右.上左.上右.下左.下右八个方向进行.迷宫输入0表示可走,输入1表示墙.为方便起见,用1将 ...
- 【Android UI设计与开发】第01期:引导界面(一)ViewPager介绍和使用详解
做Android开发加起来差不多也有一年多的时间了,总是想写点自己在开发中的心得体会与大家一起交流分享.共同进步,刚开始写也不知该如何下手,仔细想了一下,既然是刚开始写,那就从一个软件给人最直观的感受 ...
- 完爆Facebook/GraphQL,APIJSON全方位对比解析(三)-表关联查询
相关阅读: 完爆Facebook/GraphQL,APIJSON全方位对比解析(一)-基础功能 完爆Facebook/GraphQL,APIJSON全方位对比解析(二)-权限控制 自APIJSON发布 ...
- linux重启tomcat的shell脚本
基本思路: 先检查待重启的tomcat的进程是否存在 存在则执行shutdown. 然后再次检查进程是否还存在,不存在则执行kill 然后删除工作空间及10天前的日志. 最后执行启动. #!/bin/ ...
- A - 摆仙果
题目描述 Adrian, Bruno与Goran三人参加了仙界的宴会,宴会开始之前先准备了一些仙果供三人品尝,但是仙果的摆放有顺序要求,如果把仙果摆错了位置,仙果就会消失而无法品尝到. 由于三人是第一 ...
- 谷歌算法研究员:我为什么钟爱PyTorch?
老铁们好!我是一名前谷歌的算法研究员,处理深度学习相关项目已有三年经验,接下来会在平台上给大家分享一些深度学习,计算机视觉和统计机器学习的心得体会,当然了内推简历一定是收的.这篇文章,不想说太多学术的 ...
- PAT甲题题解-1106. Lowest Price in Supply Chain (25)-(dfs计算树的最小层数)
统计树的最小层数以及位于该层数上的叶子节点个数即可. 代码里建树我用了邻接链表的存储方式——链式前向星,不了解的可以参考,非常好用: http://www.cnblogs.com/chenxiwenr ...