Problem Description

This is a simple problem. The teacher gives Bob a list of problems about GCD (Greatest Common Divisor). After studying some of them, Bob thinks that GCD is so interesting. One day, he comes up with a new problem about GCD. Easy as it looks, Bob cannot figure it out himself. Now he turns to you for help, and here is the problem:

Given an array \(a\) of \(N\) positive integers \(a_1, a_2, \cdots a_{N-1}, a_N\) ; a subarray of \(a\) is defined as a continuous interval between \(a_1\) and \(a_N\) .In other words,\(a_i, a_{i+1}, \cdots, a_{j-1}, a_j\) is a subarray of \(a\), for \(1\le i\le j\le N\).For a query in the form \((L, R)\) , tell the number of different GCDs contributed by all subarrays of the interval \([L, R]\).

Input

There are several tests, process till the end of input.

For each test, the first line consists of two integers \(N\) and \(Q\), denoting the length of the array and the number of queries, respectively. \(N\) positive integers are listed in the second line, followed by \(Q\) lines each containing two integers \(L,R\) for a query.

You can assume that

\(1≤N,Q≤100000\)

\(1≤a_i≤1000000\)

Output

For each query, output the answer in one line.

Sample Input

5 3

1 3 4 6 9

3 5

2 5

1 5

Sample Output

6

6

6

Description(CHN)

给定一个数列,多次询问,每次询问 \(L,R\),求 \([L,R]\) 中所有子区间的 \(gcd\) 有多少种

Solution

预处理对于数列中的每个位置,对于它为 \(R\) 的所有区间中不同的 \(gcd\) 出现的最右边的 \(L\) 是什么。这个东西直接在上一个位置的基础上枚举就好了

将询问离线

我们用BIT维护每种 \(gcd\) 出现的区间的 \(L\) 的最右的位置在哪里,然后就用差分计算答案就好了

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=300000+10;
int n,m,a[MAXN],ans[MAXN];
std::map<int,int> M;
std::vector< std::pair<int,int> > V[MAXN],query[MAXN];
struct BIT{
int C[MAXN];
inline void init()
{
memset(C,0,sizeof(C));
}
inline int lowbit(int x)
{
return x&(-x);
}
inline void add(int x,int k)
{
while(x<=n)C[x]+=k,x+=lowbit(x);
}
inline int sum(int x)
{
if(!x)return 0ll;
int res=0;
while(x>0)res+=C[x],x-=lowbit(x);
return res;
}
};
BIT T;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
#define ft first
#define sd second
int main()
{
while(scanf("%d%d\n",&n,&m)!=EOF)
{
for(register int i=1;i<=n;++i)read(a[i]),V[i].clear(),query[i].clear();
T.init();M.clear();
V[1].push_back(std::make_pair(1,a[1]));
for(register int i=2;i<=n;++i)
{
int now=a[i];V[i].push_back(std::make_pair(i,a[i]));
for(register int j=0,lt=V[i-1].size();j<lt;++j)
{
std::pair<int,int> pr=V[i-1][j];
int d=std::__gcd(now,pr.sd);
if(d!=now)V[i].push_back(std::make_pair(pr.ft,d)),now=d;
}
}
for(register int i=1;i<=m;++i)
{
int l,r;read(l);read(r);
query[r].push_back(std::make_pair(i,l));
}
for(register int i=1;i<=n;++i)
{
for(register int j=0,lt=V[i].size();j<lt;++j)
{
std::pair<int,int> pr=V[i][j];
if(M[pr.sd])T.add(M[pr.sd],-1);
T.add(pr.ft,1);M[pr.sd]=pr.ft;
}
for(register int j=0,lt=query[i].size();j<lt;++j)
{
std::pair<int,int> pr=query[i][j];
ans[pr.ft]=T.sum(i)-T.sum(pr.sd-1);
}
}
for(register int i=1;i<=m;++i)printf("%d\n",ans[i]);
}
return 0;
}

【刷题】HDU 5869 Different GCD Subarray Query的更多相关文章

  1. HDU 5869 Different GCD Subarray Query rmq+离线+数状数组

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5869 Different GCD Subarray Query Time Limit: 6000/3 ...

  2. HDU 5869 Different GCD Subarray Query 离线+树状数组

    Different GCD Subarray Query Problem Description   This is a simple problem. The teacher gives Bob a ...

  3. hdu 5869 Different GCD Subarray Query BIT+GCD 2016ICPC 大连网络赛

    Different GCD Subarray Query Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K ( ...

  4. HDU 5869 Different GCD Subarray Query (GCD种类预处理+树状数组维护)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5869 问你l~r之间的连续序列的gcd种类. 首先固定右端点,预处理gcd不同尽量靠右的位置(此时gc ...

  5. HDU 5869 Different GCD Subarray Query 树状数组 + 一些数学背景

    http://acm.hdu.edu.cn/showproblem.php?pid=5869 题意:给定一个数组,然后给出若干个询问,询问[L, R]中,有多少个子数组的gcd是不同的. 就是[L, ...

  6. HDU 5869 Different GCD Subarray Query

    离线操作,树状数组,$RMQ$. 这个题的本质和$HDU$ $3333$是一样的,$HDU$ $3333$要求计算区间内不同的数字有几个. 这题稍微变了一下,相当于原来扫描到$i$的之后是更新$a[i ...

  7. HDU 5869 Different GCD Subarray Query 树状数组+离线

    Problem Description This is a simple problem. The teacher gives Bob a list of problems about GCD (Gr ...

  8. HDU 5869 Different GCD Subarray Query(2016大连网络赛 B 树状数组+技巧)

    还是想不到,真的觉得难,思路太巧妙 题意:给你一串数和一些区间,对于每个区间求出区间内每段连续值的不同gcd个数(该区间任一点可做起点,此点及之后的点都可做终点) 首先我们可以知道每次添加一个值时gc ...

  9. HDU 5869.Different GCD Subarray Query-区间gcd+树状数组 (神奇的标记右移操作) (2016年ICPC大连网络赛)

    树状数组... Different GCD Subarray Query Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/6 ...

随机推荐

  1. 20155304《网络对抗》MSF基础应用

    20155304<网络对抗>MSF基础应用 实践内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 1.1一个主动攻击实践,如ms08_ ...

  2. 带Alpha通道的色彩叠加问题

    css3的rgba色彩模式.png/gif图片的alpha通道.canvas的rgba色彩模式.css3的阴影.css3的opacity属性等等,这些应用在网页中,有意无意间,我们的页面多了许多半透明 ...

  3. 类加载, 静态变量初始化, String不可变, 泛型使用, 内部类

    1.java变量类型 java变量类型分:基本数据类型变量和Object数据类型变量,变量也是占用者内存的 例如: int i = 3; i这个变量保存的就是整形3, 占32位 Object a = ...

  4. 使用 vi/vim 时,粘贴进新创建文件或空文件的首行内容丢失的解决方法

    只需要进入插入模式后,回车空一行或几行,再粘贴,再把上面的几个空行back回去,就不会丢失首行的内容了.

  5. stl源码剖析 详细学习笔记 算法(2)

    //---------------------------15/03/29---------------------------- //****************************set相 ...

  6. ESLint 规则详解(二)

    接上篇 ESLint 规则详解(一) 前端界大神 Nicholas C. Zakas 在 2013 年开发的 ESLint,极大地方便了大家对 Javascript 代码进行代码规范检查.这个工具包含 ...

  7. 爬虫利器_you-get

    用Python做爬虫也很久了,今天分享一个轻巧的爬虫库:you-get you-get 是用 Python3写成的视频,图片,音频下载工具,堪称盗链,爬虫神器.其支持的网站,都是直接破解其算法,直接算 ...

  8. PHP学习 Cookie和Session

    <?phpheader("Content-type:text/html;charset=utf-8");session_start(); $_SESSION['count'] ...

  9. Java 8 新特性---------Stream

    Java 8 API添加了一个新的抽象称为流Stream,可以让你以一种声明的方式处理数据. Stream使用一种类似用SQL语句从数据库查询数据的直观方式来提供一种对Java集合运算和表达的高阶抽象 ...

  10. C++:多态浅析

    1.多态 在C++中由两种多态性: • 编译时的多态性:通过函数的重载和运算符的重载来实现的 • 运行时的多态性:通过类继承关系和虚函数来实现的 特别注意: a.运行时的多态性是指程序执行前,无法根据 ...