Prim算法和Kruskal算法都能从连通图找出最小生成树。区别在于Prim算法是以某个顶点出发挨个找,而Kruskal是先排序边,每次选出最短距离的边再找。

一、Prim(普里姆算法)算法:

Prim算法实现的是找出一个有权重连通图中的最小生成树,即:具有最小权重且连接到所有结点的树。(强调的是树,树是没有回路的)。

Prim算法是这样来做的:

首先以一个结点作为最小生成树的初始结点,然后以迭代的方式找出与最小生成树中各结点权重最小边,并加入到最小生成树中。加入之后如果产生回路则跳过这条边,选择下一个结点。当所有结点都加入到最小生成树中之后,就找出了连通图中的最小生成树了。

Prim算法最小生成树查找过程:

C语言实现:

#include <stdio.h>
#include <stdlib.h>
#define maxint 1073741824
int main()
{
  FILE *input=fopen("input.txt","r"),*out=fopen("output.txt","w");
  int n,m,i,j,x,y,w;
  fscanf(input,"%d %d",&n,&m);
  int map[n][n],E[m][3],tree[m],Mst[n][n];
  /*Mst表示最小生成树的邻接矩阵,map是原图,E是边集,其中E[0]和E[1]是边的两个顶点,E[2]是边的权值,tree是用于判断原图的点是否在最小生成树中*/
  memset(tree,0,sizeof(tree));
  for(i=0; i<n; i++)
  {
   for(j=0; j<n; j++)
   {
   map[i][j]=maxint;
   Mst[i][j]=maxint;
    }
   E[i][0]=E[i][1]=maxint;
  }
  for(i=0; i<m; i++)
  {
   fscanf(input,"%d %d %d",&x,&y,&w);
   if(w<map[x][y])
   {
   map[x][y]=w;
   map[y][x]=w;
   }
  }
  int min=maxint,next=0,now=0,k=0;
  tree[0]=1;
  for(i=0; i<n; i++)
  {
   for(j=0; j<n; j++)
   {
   if(map[now][j]!=maxint && tree[j]==0)
   {
   E[k][0]=now;
   E[k][2]=map[now][j];
   E[k++][1]=j;
   }
   }
   for(j=0; j<k; j++)
   {
   if(E[j][2]<min && tree[E[j][1]]==0)
   {
   min=E[j][2];
   x=E[j][0];
   y=E[j][1];
   next=y;
   }
   }
   tree[next]=1;
   now=next;
   Mst[x][y]=map[x][y];
   Mst[y][x]=map[y][x];
   min=maxint;
  }
  for(i=0; i<n; i++)
  {
   for(j=0; j<n; j++)
   {
   if(Mst[i][j]==maxint) //判断两点是否连通
   fprintf(out,"00 "); //美化输出,不必多加探究
   else
   {
   fprintf(out,"%d ",Mst[i][j]); //输出生成树的邻接矩阵,要输出树的自己可以根据邻接矩阵的数据进行加工
   }
   }
   fprintf(out,"\n");
  }
  fclose(input);
  fclose(out);
  return 0;
} // 程序未考虑不是连通图的情况,修改很简单,判断生成树的节点数量是否等于原图的节点数量
  //如果小于(不会有大于)则本图不是连通图
  //其实prim和迪杰斯特拉算法核心有相似之处

    二、Kruskal(克鲁斯卡尔)算法:

Kruskal算法与Prim算法的不同之处在于,Kruskal在找最小生成树结点之前,需要对所有权重边做从小到大排序。将排序好的权重边依次加入到最小生成树中,如果加入时产生回路就跳过这条边,加入下一条边。当所有结点都加入到最小生成树中之后,就找出了最小生成树。

C语言实现:

/*  Kruskal.c
  Copyright (c) 2002, 2006 by ctu_85
  All Rights Reserved.
I am sorry to say that the situation of unconnected graph is not concerned
*/
#include "stdio.h"
#define maxver 10
#define maxright 100
int G[maxver][maxver],record=0,touched[maxver][maxver];
int circle=0;
int FindCircle(int,int,int,int);
int main()
{
int path[maxver][2],used[maxver][maxver];   int i,j,k,t,min=maxright,exsit=0;
  int v1,v2,num,temp,status=0;
  restart:
  printf("Please enter the number of vertex(s) in the graph:\n");
  scanf("%d",&num);
  if(num>maxver||num<0)
  {
   printf("Error!Please reinput!\n");
   goto restart;
  }
  for(j=0;j<num;j++)
   for(k=0;k<num;k++)
   {
   if(j==k)
   {
   G[j][k]=maxright;
   used[j][k]=1;
   touched[j][k]=0;
   }
   else
   if(j<k)
   {
   re:
   printf("Please input the right between vertex %d and vertex %d,if no edge exists please input -1:\n",j+1,k+1);
   scanf("%d",&temp);
   if(temp>=maxright||temp<-1)
   {
   printf("Invalid input!\n");
   goto re;
   }
   if(temp==-1)
   temp=maxright;
   G[j][k]=G[k][j]=temp;
   used[j][k]=used[k][j]=0;
   touched[j][k]=touched[k][j]=0;
   }
   }
   for(j=0;j<num;j++)
   {
   path[j][0]=0;
   path[j][1]=0;
   }
   for(j=0;j<num;j++)
   {
   status=0;
   for(k=0;k<num;k++)
   if(G[j][k]<maxright)
   {
   status=1;
   break;
   }
   if(status==0)
   break;
   }
   for(i=0;i<num-1&&status;i++)
   {
   for(j=0;j<num;j++)
   for(k=0;k<num;k++)
   if(G[j][k]<min&&!used[j][k])
   {
   v1=j;
   v2=k;
   min=G[j][k];
   }
   if(!used[v1][v2])
   {
   used[v1][v2]=1;
   used[v2][v1]=1;
   touched[v1][v2]=1;
   touched[v2][v1]=1;
   path[0]=v1;
   path[1]=v2;
   for(t=0;t<record;t++)
   FindCircle(path[t][0],path[t][0],num,path[t][0]);
   if(circle)
   {/*if a circle exsits,roll back*/
   circle=0;
   i--;
   exsit=0;
   touched[v1][v2]=0;
   touched[v2][v1]=0;
   min=maxright;
   }
   else
   {
   record++;
   min=maxright;
   }
   }
  }
  if(!status)
  printf("We cannot deal with it because the graph is not connected!\n");
  else
  {
   for(i=0;i<num-1;i++)
   printf("Path %d:vertex %d to vertex %d\n",i+1,path[0]+1,path[1]+1);
  }
  return 1;
}
int FindCircle(int start,int begin,int times,int pre)
{ /* to judge whether a circle is produced*/
  int i;
  for(i=0;i<times;i++)
  if(touched[begin]==1)
  {
   if(i==start&&pre!=start)
   {
   circle=1;
   return 1;
   break;
   }
  else
   if(pre!=i)
   FindCircle(start,i,times,begin);
   else
   continue;
  }
  return 1;
}

无疑,Kruskal算法在效率上要比Prim算法快,因为Kruskal只需要对权重边做一次排序,而Prim算法则需要做多次排序。尽管Prim算法每次做的算法涉及的权重边不一定会涵盖连通图中的所有边,但是随着所使用的排序算法的效率的提高,Kruskal算法和Prim算法之间的差异将会清晰的显性出来。

Prim算法和Kruskal算法的更多相关文章

  1. 转载:最小生成树-Prim算法和Kruskal算法

    本文摘自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 最小生成树-Prim算法和Kruskal算法 Prim算 ...

  2. 最小生成树之Prim算法和Kruskal算法

    最小生成树算法 一个连通图可能有多棵生成树,而最小生成树是一副连通加权无向图中一颗权值最小的生成树,它可以根据Prim算法和Kruskal算法得出,这两个算法分别从点和边的角度来解决. Prim算法 ...

  3. java实现最小生成树的prim算法和kruskal算法

    在边赋权图中,权值总和最小的生成树称为最小生成树.构造最小生成树有两种算法,分别是prim算法和kruskal算法.在边赋权图中,如下图所示: 在上述赋权图中,可以看到图的顶点编号和顶点之间邻接边的权 ...

  4. 最小生成树——Prim算法和Kruskal算法

    洛谷P3366 最小生成树板子题 这篇博客介绍两个算法:Prim算法和Kruskal算法,两个算法各有优劣 一般来说当图比较稀疏的时候,Kruskal算法比较快 而当图很密集,Prim算法就大显身手了 ...

  5. 最小生成树Prim算法和Kruskal算法

    Prim算法(使用visited数组实现) Prim算法求最小生成树的时候和边数无关,和顶点树有关,所以适合求解稠密网的最小生成树. Prim算法的步骤包括: 1. 将一个图分为两部分,一部分归为点集 ...

  6. 【数据结构】最小生成树之prim算法和kruskal算法

    在日常生活中解决问题经常需要考虑最优的问题,而最小生成树就是其中的一种.看了很多博客,先总结如下,只需要您20分钟的时间,就能完全理解. 比如:有四个村庄要修四条路,让村子能两两联系起来,这时就有最优 ...

  7. Prim算法和Kruskal算法的正确性证明

    今天学习了Prim算法和Kruskal算法,因为书中只给出了算法的实现,而没有给出关于算法正确性的证明,所以尝试着给出了自己的证明.刚才看了一下<算法>一书中的相关章节,使用了切分定理来证 ...

  8. 最小生成树---Prim算法和Kruskal算法

    Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...

  9. prim 算法和 kruskal算法

    Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...

随机推荐

  1. 翻译:探索GLSL-用几何着色器(着色器库)实现法线可视化

    翻译:探索GLSL-用几何着色器(着色器库)实现法线可视化 翻译自: Exploring GLSL – Normal Visualizer with Geometry Shaders (Shader ...

  2. 数学:拓展Lucas定理

    拓展Lucas定理解决大组合数取模并且模数为任意数的情况 大概的思路是把模数用唯一分解定理拆开之后然后去做 然后要解决的一个子问题是求模质数的k次方 将分母部分转化成逆元再去做就好了 这里贴一份别人的 ...

  3. [C]语法, 知识点总结(二. 结构体, 类别名, static, const)

    结构体 定义: struct Student{ // 定义结构体Student, stu是创建的对象         char a[17]; // 结构体里面可以有多种不同类型的变量         ...

  4. [原]Android 初遇Http错误 httpClient.execute

    错误源头: HttpResponse response = httpClient.execute(httpget); 错误信息: android.os.NetworkOnMainThreadExcep ...

  5. 用原生js对表格排序

    阿里的模拟笔试题,当时时间有限没写出来,其实是因为自己对原生dom操作不熟悉,这里补一下. 题目的大意是有一个表格,如代码所示 <table> <tr> <th>N ...

  6. 第9月第5天 AVVideoAverageBitRateKey

    1. https://stackoverflow.com/questions/11751883/how-can-i-reduce-the-file-size-of-a-video-created-wi ...

  7. 利用itertools生成密码字典,多线程撞库破解rar压缩文件密码

    脚本功能: 利用itertools生成密码字典(迭代器形式) 多线程并发从密码字典中取出密码进行验证 验证成功后把密码写入文件中保存 #!/usr/bin/env python # -*- codin ...

  8. ListView position

    在使用listview的时候,我们经常会在listview的监听事件中,例如OnItemClickListener(onItemClick)中,或listview的adapter中(getView.g ...

  9. Xgboost理解

    一.xgboost模型函数形式 xgboost也是GBDT的一种,只不过GBDT在函数空间进行搜索最优F的时候,采用的是梯度下降法也就是一阶泰勒展开:而xgboost采用的是二阶泰勒展开也就是牛顿法, ...

  10. ViewGroup.layout(int l, int t, int r, int b)四个输入参数的含义

    ViewGroup.layout(int l, int t, int r, int b)这个方法是确定View的大小和位置的,然后将其绘制出来,里面的四个参数分别是View的四个点的坐标,他的坐标不是 ...