考虑min-max容斥

\(E[max(S)] = \sum \limits_{T \subset S} min(T)\)

\(min(T)\)是可以被表示出来

即所有与\(T\)有交集的数的概率的和的倒数

通过转化一下,可以考虑求所有与\(T\)没有交集的数的概率和

即求\(T\)的补集的子集的概率和

用FMT随意做下吧...

注意:概率为1的时候需要特判

复杂度\(O(2^n * n)\)


#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define de double
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --) const int sid = (1 << 20) + 25; int n, show;
de Max, sub[sid]; int main() {
scanf("%d", &n);
rep(i, 0, (1 << n) - 1) {
scanf("%lf", &sub[i]);
show |= i * (sub[i] > 1e-8);
}
if(show != (1 << n) - 1) { puts("INF"); return 0; } rep(i, 1, n) rep(S, 0, (1 << n) - 1)
if(!(S & (1 << i - 1)))
sub[S ^ (1 << i - 1)] += sub[S]; int T = (1 << n) - 1;
rep(S, 1, (1 << n) - 1) { // no 0
if(__builtin_popcount(S) & 1) Max += 1.0 / (1.0 - sub[T ^ S]);
else Max -= 1.0 / (1.0 - sub[T ^ S]);
}
printf("%.12lf\n", Max);
return 0;
}

luoguP3175 [HAOI2015]按位或 min-max容斥 + 高维前缀和的更多相关文章

  1. BZOJ4036:按位或 (min_max容斥&高维前缀和)

    Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal 的or)操作.选择数字i的概率是p[i].保证0&l ...

  2. [luogu 3175] [HAOI2015]按位或(min-max容斥+高维前缀和)

    [luogu 3175] [HAOI2015]按位或 题面 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行按位或运算.问期望多少秒后,你手上的数字变成2^n ...

  3. [HAOI2015]按位或(min-max容斥,FWT,FMT)

    题目链接:洛谷 题目大意:给定正整数 $n$.一开始有一个数字 $0$,然后每一秒,都有 $p_i$ 的概率获得 $i$ 这个数 $(0\le i< 2^n)$.一秒恰好会获得一个数.每获得一个 ...

  4. BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】

    题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = ...

  5. bzoj 4036: [HAOI2015]按位或【min-max容斥+FWT】

    其实也不是FWT--我也不知道刷FWT专题问什么会刷出来这个东西 这是min-max容斥讲解:https://www.zybuluo.com/ysner/note/1248287 总之就是设min(s ...

  6. Codeforces.449D.Jzzhu and Numbers(容斥 高维前缀和)

    题目链接 \(Description\) 给定\(n\)个正整数\(a_i\).求有多少个子序列\(a_{i_1},a_{i_2},...,a_{i_k}\),满足\(a_{i_1},a_{i_2}, ...

  7. 【BZOJ4036】按位或(Min-Max容斥,FWT)

    [BZOJ4036]按位或(Min-Max容斥,FWT) 题面 BZOJ 洛谷 题解 很明显直接套用\(min-max\)容斥. 设\(E(max\{S\})\)表示\(S\)中最晚出现元素出现时间的 ...

  8. [Hdu-6053] TrickGCD[容斥,前缀和]

    Online Judge:Hdu6053 Label:容斥,前缀和 题面: 题目描述 给你一个长度为\(N\)的序列A,现在让你构造一个长度同样为\(N\)的序列B,并满足如下条件,问有多少种方案数? ...

  9. P3175-[HAOI2015]按位或【min-max容斥,FWT】

    正题 题目链接:https://www.luogu.com.cn/problem/P3175 题目大意 开始有一个\(n\)位二进制数\(s=0\),每次有\(p_i\)概率选取数字\(i\)让\(s ...

随机推荐

  1. Linux 用户和组管理

    这是用户和组管理的知识点,不想看文字就看视频吧,还是视频为主,文字为备忘录 视频链接: 项目1用户管理 1.创建一个新用户user01,设置其主目录为/home/user01: #useradd –d ...

  2. log4j2打印jdbcTemplate的sql以及参数

    log4j2打印jdbcTemplate的sql以及参数 ——IT唐伯虎 摘要: log4j2打印jdbcTemplate的sql以及参数. 在log4j2.xml加上这两个logger即可: < ...

  3. AttributeError: 'module' object has no attribute 'X509_up_ref'

    主要报错: AttributeError: 'module' object has no attribute 'X509_up_ref' 1 解决办法 卸载再重装pyOpenSSL pip unins ...

  4. Stochastic Optimization Techniques

    Stochastic Optimization Techniques Neural networks are often trained stochastically, i.e. using a me ...

  5. NAT地址转换

    2017年1月12日, 星期四 NAT地址转换 SNAT:源地址转换  DNAT:目标地址转换   null

  6. [转载]嵌入式C语言中的Doxygen注释模板

    http://blog.csdn.net/willerency/article/details/7083953 嵌入式C语言开发中通常使用Doxygen进行文档的生成.Doxygen支持多种格式,非常 ...

  7. 20155227 2016-2017-2 《Java程序设计》第五周学习总结

    20155227 2016-2017-2 <Java程序设计>第五周学习总结 教材学习内容总结 语法与继承架构 使用try...catch JVM会尝试执行try区块中的程序代码,如果发生 ...

  8. aliyun EC2配置利用filezilla配置ftp服务

    项目需要在阿里云EC2虚拟主机上配置ftp服务器,看了阿里云的教程可以使用filezilla配置,但一直遇到了一些问题.现记录一些步骤,避免以后出现类似问题. 1安装filezilla server ...

  9. 为你详细解读HTTP请求头的具体含意

    当我们打开一个网页时,浏览器要向网站服务器发送一个HTTP请求头,然后网站服务器根据HTTP请求头的内容生成当次请求的内容发送给浏览器.你明白HTTP请求头的具体含意吗?下面一条条的为你详细解读,先看 ...

  10. spring动态加载(刷新)配置文件 [复制链接]

    待验证 在程序开发时,通常会经常修改spring的配置文件,不得不重启tomcat来加载spring配,费时费力.如果能在不重启tomcat的情况下,手动动态加载spring 配置文件,动态重启读取s ...