luoguP3175 [HAOI2015]按位或 min-max容斥 + 高维前缀和

考虑min-max容斥
\(E[max(S)] = \sum \limits_{T \subset S} min(T)\)
\(min(T)\)是可以被表示出来
即所有与\(T\)有交集的数的概率的和的倒数
通过转化一下,可以考虑求所有与\(T\)没有交集的数的概率和
即求\(T\)的补集的子集的概率和
用FMT随意做下吧...
注意:概率为1的时候需要特判
复杂度\(O(2^n * n)\)
#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define de double
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
const int sid = (1 << 20) + 25;
int n, show;
de Max, sub[sid];
int main() {
scanf("%d", &n);
rep(i, 0, (1 << n) - 1) {
scanf("%lf", &sub[i]);
show |= i * (sub[i] > 1e-8);
}
if(show != (1 << n) - 1) { puts("INF"); return 0; }
rep(i, 1, n) rep(S, 0, (1 << n) - 1)
if(!(S & (1 << i - 1)))
sub[S ^ (1 << i - 1)] += sub[S];
int T = (1 << n) - 1;
rep(S, 1, (1 << n) - 1) { // no 0
if(__builtin_popcount(S) & 1) Max += 1.0 / (1.0 - sub[T ^ S]);
else Max -= 1.0 / (1.0 - sub[T ^ S]);
}
printf("%.12lf\n", Max);
return 0;
}
luoguP3175 [HAOI2015]按位或 min-max容斥 + 高维前缀和的更多相关文章
- BZOJ4036:按位或 (min_max容斥&高维前缀和)
Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal 的or)操作.选择数字i的概率是p[i].保证0&l ...
- [luogu 3175] [HAOI2015]按位或(min-max容斥+高维前缀和)
[luogu 3175] [HAOI2015]按位或 题面 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行按位或运算.问期望多少秒后,你手上的数字变成2^n ...
- [HAOI2015]按位或(min-max容斥,FWT,FMT)
题目链接:洛谷 题目大意:给定正整数 $n$.一开始有一个数字 $0$,然后每一秒,都有 $p_i$ 的概率获得 $i$ 这个数 $(0\le i< 2^n)$.一秒恰好会获得一个数.每获得一个 ...
- BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】
题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = ...
- bzoj 4036: [HAOI2015]按位或【min-max容斥+FWT】
其实也不是FWT--我也不知道刷FWT专题问什么会刷出来这个东西 这是min-max容斥讲解:https://www.zybuluo.com/ysner/note/1248287 总之就是设min(s ...
- Codeforces.449D.Jzzhu and Numbers(容斥 高维前缀和)
题目链接 \(Description\) 给定\(n\)个正整数\(a_i\).求有多少个子序列\(a_{i_1},a_{i_2},...,a_{i_k}\),满足\(a_{i_1},a_{i_2}, ...
- 【BZOJ4036】按位或(Min-Max容斥,FWT)
[BZOJ4036]按位或(Min-Max容斥,FWT) 题面 BZOJ 洛谷 题解 很明显直接套用\(min-max\)容斥. 设\(E(max\{S\})\)表示\(S\)中最晚出现元素出现时间的 ...
- [Hdu-6053] TrickGCD[容斥,前缀和]
Online Judge:Hdu6053 Label:容斥,前缀和 题面: 题目描述 给你一个长度为\(N\)的序列A,现在让你构造一个长度同样为\(N\)的序列B,并满足如下条件,问有多少种方案数? ...
- P3175-[HAOI2015]按位或【min-max容斥,FWT】
正题 题目链接:https://www.luogu.com.cn/problem/P3175 题目大意 开始有一个\(n\)位二进制数\(s=0\),每次有\(p_i\)概率选取数字\(i\)让\(s ...
随机推荐
- bzoj千题计划257:bzoj4199: [Noi2015]品酒大会
http://www.lydsy.com/JudgeOnline/problem.php?id=4199 求出后缀数组的height 从大到小枚举,合并 维护组内 元素个数,最大.次大.最小.次小 # ...
- web html 基础2
1.表格<table> 行 tr,没有列的说法,只是单元格td table里面只能仿tr,tr里面只能放td,td可以嵌套任何标签 表格属性 border 边框, cellspacing ...
- Liberty Mutual Property Inspection, Winner's Interview: Qingchen Wang
Liberty Mutual Property Inspection, Winner's Interview: Qingchen Wang The hugely popular Liberty Mut ...
- springboot(五):springboot整合shiro-登录认证和权限管理
http://z77z.oschina.io/ http://www.cnblogs.com/aqsunkai/category/982003.html https://www.cnblogs.com ...
- 各种卷积类型Convolution
从最开始的卷积层,发展至今,卷积已不再是当初的卷积,而是一个研究方向.在反卷积这篇博客中,介绍了一些常见的卷积的关系,本篇博客就是要梳理这些有趣的卷积结构. 阅读本篇博客之前,建议将这篇博客结合在一起 ...
- 【译】使用OpenVAS 9进行漏洞扫描
本文译自Vulnerability Scanning with OpenVAS 9 part 1: Installation & Setup系列,本文将融合目前已经发表的四个部分. Part ...
- Anaconda+django写出第一个web app(十)
今天继续学习外键的使用. 当我们有了category.series和很多tutorials时,我们查看某个tutorial,可能需要这样的路径http://127.0.0.1:8000/categor ...
- BAT脚本加防火墙455端口
@echo off mode con: cols=85 lines=30 :NSFOCUSXA title WannaCry勒索病毒安全加固工具 color 0A cls echo. echo. ec ...
- mysql Keepalived 实践
Keepalived 是一种高性能的服务器高可用或热备解决方案,Keepalived可以用来防止服务器单点故障(单点故障是指一旦某一点出现故障就会导致整个系统架构的不可用)的发生,通过配合Nginx可 ...
- TCP长连接和短连接的区别【转】
转自:https://www.cnblogs.com/onlysun/p/4520553.html 当网络通信时采用TCP协议时,在真正的读写操作之前,server与client之间必须建立一个连接, ...