E. Sasha and Array

题目连接:

http://codeforces.com/contest/719/problem/E

Description

Sasha has an array of integers a1, a2, ..., an. You have to perform m queries. There might be queries of two types:

1 l r x — increase all integers on the segment from l to r by values x;
2 l r — find , where f(x) is the x-th Fibonacci number. As this number may be large, you only have to find it modulo 109 + 7.

In this problem we define Fibonacci numbers as follows: f(1) = 1, f(2) = 1, f(x) = f(x - 1) + f(x - 2) for all x > 2.

Sasha is a very talented boy and he managed to perform all queries in five seconds. Will you be able to write the program that performs as well as Sasha?

Input

The first line of the input contains two integers n and m (1 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of elements in the array and the number of queries respectively.

The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).

Then follow m lines with queries descriptions. Each of them contains integers tpi, li, ri and may be xi (1 ≤ tpi ≤ 2, 1 ≤ li ≤ ri ≤ n, 1 ≤ xi ≤ 109). Here tpi = 1 corresponds to the queries of the first type and tpi corresponds to the queries of the second type.

It's guaranteed that the input will contains at least one query of the second type.

Output

For each query of the second type print the answer modulo 109 + 7.

Sample Input

5 4

1 1 2 1 1

2 1 5

1 2 4 2

2 2 4

2 1 5

Sample Output

5

7

9

Hint

题意

给你n个数,两个操作,1是区间增加x,2是查询区间fib(a[i])的和

题解:

回忆一下你怎么做矩阵快速幂fib的,就知道这个更新,其实就是多乘上了一个A^x矩阵。

A = 【0,1;0,0;】这个玩意儿。

然后就可以区间更新呢。

CF官方题解下面有个评论说的很清楚,大家可以看一下。

代码

#include<bits/stdc++.h>
using namespace std;
const int mod = 1e9+7;
const int maxn = 1e5+5;
struct node
{
long long a[2][2];
void reset()
{
memset(a,0,sizeof(a));
}
void one()
{
reset();
a[0][0]=a[1][1]=1;
}
};
node add(node A,node B)
{
node k;k.reset();
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
k.a[i][j]=(A.a[i][j]+B.a[i][j])%mod;
return k;
}
node mul(node A,node B)
{
node k;memset(k.a,0,sizeof(k.a));
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
for(int t=0;t<2;t++)
k.a[i][j]=(k.a[i][j]+A.a[i][t]*B.a[t][j])%mod;
return k;
}
node qpow(int p)
{
node A;
A.a[0][0]=0,A.a[1][0]=1,A.a[0][1]=1,A.a[1][1]=1;
node K;
K.one();
while(p)
{
if(p%2)K=mul(K,A);
A=mul(A,A);p/=2;
}
return K;
}
typedef node SgTreeDataType;
struct treenode
{
int L , R , flag;
SgTreeDataType sum , lazy;
void update(SgTreeDataType v)
{
sum=mul(sum,v);
lazy=mul(lazy,v);
flag=1;
}
}; treenode tree[maxn*4];
int a[maxn];
inline void push_down(int o)
{
if(tree[o].flag)
{
tree[2*o].update(tree[o].lazy) ; tree[2*o+1].update(tree[o].lazy);
tree[o].flag = 0;tree[o].lazy.one();
}
} inline void push_up(int o)
{
tree[o].sum = add(tree[o*2].sum,tree[o*2+1].sum);
}
node tmp;
inline void build_tree(int L , int R , int o)
{
tree[o].L = L , tree[o].R = R,tree[o].sum.reset(),tree[o].lazy.one(),tree[o].flag=0;
if(L==R)
{
tree[o].sum=qpow(a[L]);
}
if (R > L)
{
int mid = (L+R) >> 1;
build_tree(L,mid,o*2);
build_tree(mid+1,R,o*2+1);
push_up(o);
}
} inline void update(int QL,int QR,SgTreeDataType v,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) tree[o].update(v);
else
{
push_down(o);
int mid = (L+R)>>1;
if (QL <= mid) update(QL,QR,v,o*2);
if (QR > mid) update(QL,QR,v,o*2+1);
push_up(o);
}
} inline SgTreeDataType query(int QL,int QR,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) return tree[o].sum;
else
{
push_down(o);
int mid = (L+R)>>1;
SgTreeDataType res;res.reset();
if (QL <= mid) res=add(res,query(QL,QR,2*o));
if (QR > mid) res=add(res,query(QL,QR,2*o+1));
push_up(o);
return res;
}
} int n,q; int main()
{
tmp.a[0][0]=0,tmp.a[1][0]=1,tmp.a[0][1]=1,tmp.a[1][1]=1;
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
build_tree(1,n,1);
for(int i=1;i<=q;i++)
{
int op;scanf("%d",&op);
if(op==2){
int a,b;scanf("%d%d",&a,&b);
printf("%lld\n",query(a,b,1).a[1][0]);
}
else{
int a,b,c;scanf("%d%d%d",&a,&b,&c);
update(a,b,qpow(c),1);
}
}
return 0;
}

Codeforces Round #373 (Div. 2) E. Sasha and Array 线段树维护矩阵的更多相关文章

  1. Codeforces Round #373 (Div. 2) E. Sasha and Array 矩阵快速幂+线段树

    E. Sasha and Array time limit per test 5 seconds memory limit per test 256 megabytes input standard ...

  2. Codeforces Round #271 (Div. 2) E题 Pillars(线段树维护DP)

    题目地址:http://codeforces.com/contest/474/problem/E 第一次遇到这样的用线段树来维护DP的题目.ASC中也遇到过,当时也非常自然的想到了线段树维护DP,可是 ...

  3. CF719E. Sasha and Array [线段树维护矩阵]

    CF719E. Sasha and Array 题意: 对长度为 n 的数列进行 m 次操作, 操作为: a[l..r] 每一项都加一个常数 C, 其中 0 ≤ C ≤ 10^9 求 F[a[l]]+ ...

  4. Codeforces Round #373 (Div. 2) E. Sasha and Array

    题目链接 分析:矩阵快速幂+线段树 斐波那契数列的计算是矩阵快速幂的模板题,这个也没什么很多好解释的,学了矩阵快速幂应该就知道的东西= =这道题比较巧妙的在于需要用线段树来维护矩阵,达到快速查询区间斐 ...

  5. Codeforces Round #374 (Div. 2) D. Maxim and Array 线段树+贪心

    D. Maxim and Array time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  6. Codeforces Round #312 (Div. 2) E. A Simple Task 线段树

    E. A Simple Task 题目连接: http://www.codeforces.com/contest/558/problem/E Description This task is very ...

  7. Codeforces Round #590 (Div. 3) D. Distinct Characters Queries(线段树, 位运算)

    链接: https://codeforces.com/contest/1234/problem/D 题意: You are given a string s consisting of lowerca ...

  8. Codeforces Round #292 (Div. 1) C. Drazil and Park 线段树

    C. Drazil and Park 题目连接: http://codeforces.com/contest/516/problem/C Description Drazil is a monkey. ...

  9. Codeforces Round #254 (Div. 1) C. DZY Loves Colors 线段树

    题目链接: http://codeforces.com/problemset/problem/444/C J. DZY Loves Colors time limit per test:2 secon ...

随机推荐

  1. Git error: hint: Updates were rejected because the remote contains work that you do hint: not have locally

    hint: Updates were rejected because the remote contains work that you dohint: not have locally. This ...

  2. bzoj千题计划209:bzoj1185: [HNOI2007]最小矩形覆盖

    http://www.lydsy.com/JudgeOnline/problem.php?id=1185 题解去看它 http://www.cnblogs.com/TheRoadToTheGold/p ...

  3. AngularJS入门基础——作用域

    作用域$scope是构成AngularJS应用的核心基础,在整个框架中都被广泛使用,因此了解它是非常重要的. $scope对像是定义应用业务逻辑,控制器方法和视图属性的地方.作用域是视图和控制器之间的 ...

  4. 第10月第20天 afnetwork like MKNetworkEngine http post

    1. + (AFHTTPRequestOperation *)requestSellerWithCompletion:(requestFinishedCompletionBlock)successBl ...

  5. Java初转型-SSM配置文件

    文章来源:http://www.cnblogs.com/wxisme/p/4924561.html web.xml的配置                                        ...

  6. 【干货】Windows内存获取和分析---查找恶意进程,端口

    来源:Unit 5: Windows Acquisition 5.1 Windows Acquisition Windows Memory Acquisition and Analysis 调查人员检 ...

  7. MySQL管理工具MySQL Utilities — 介绍与安装(1)

    MySQL Utilities介绍 MySQL Utilities 提供一组命令行工具用于维护和管理 MySQL 服务器,包括: 管理工具 (克隆.复制.比较.差异.导出.导入) 复制工具 (安装.配 ...

  8. linux中serial driver理解【转】

    转自:http://blog.csdn.net/laoliu_lcl/article/details/39967225 英文文档地址:myandroid/kernel_imx/Documentatio ...

  9. aria2

    在之前我们已经介绍了通过uGet使用aria2来进行下载,但是这样只是使用aria2最简单的功能,现在我们来介绍一下aria2的常用命令 简单篇: 一般使用使用 aria2 下载文件,只需在命令后附加 ...

  10. Java编程的逻辑 (68) - 线程的基本协作机制 (下)

    ​本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http: ...