【LOJ】#121. 「离线可过」动态图连通性
题解
和BZOJ4025挺像的
就是维护边权是时间的最大生成树
删边直接删
两点未联通时直接相连,两点联通则找两点间边权小的一条边删除即可
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 500005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,M;
int id[MAXN],tot,pos[MAXN + 5005];
int op[MAXN],x[MAXN],y[MAXN];
int t[5005][5005];
namespace lct {
struct node {
int lc,rc,fa,val,minq;
bool rev;
}tr[MAXN * 2];
#define lc(u) tr[u].lc
#define rc(u) tr[u].rc
#define fa(u) tr[u].fa
#define val(u) tr[u].val
#define minq(u) tr[u].minq
#define rev(u) tr[u].rev
void Init() {
val(0) = minq(0) = 0x7fffffff;
for(int i = 1 ; i <= N ; ++i) val(i) = minq(i) = M + 2;
}
void reverse(int u) {
swap(lc(u),rc(u));
rev(u) ^= 1;
}
void pushdown(int u) {
if(rev(u)) {
reverse(lc(u));
reverse(rc(u));
rev(u) = 0;
}
}
void update(int u) {
minq(u) = val(u);
minq(u) = min(minq(u),minq(lc(u)));
minq(u) = min(minq(u),minq(rc(u)));
}
bool isRoot(int u) {
if(!fa(u)) return true;
else return rc(fa(u)) != u && lc(fa(u)) != u;
}
bool which(int u) {
return rc(fa(u)) == u;
}
void rotate(int u) {
int v = fa(u);
if(!isRoot(v)) {(v == lc(fa(v)) ? lc(fa(v)) : rc(fa(v))) = u;}
fa(u) = fa(v);fa(v) = u;
if(u == lc(v)) {lc(v) = rc(u);fa(rc(u)) = v;rc(u) = v;}
else {rc(v) = lc(u);fa(lc(u)) = v;lc(u) = v;}
update(v);
}
void Splay(int u) {
static int que[MAXN],qr;
qr = 0;int x;
for(x = u ; !isRoot(x) ; x = fa(x)) que[++qr] = x;
que[++qr] = x;
for(int i = qr ; i >= 1 ; --i) pushdown(que[i]);
while(!isRoot(u)) {
if(!isRoot(fa(u))) {
if(which(fa(u)) == which(u)) rotate(fa(u));
else rotate(u);
}
rotate(u);
}
update(u);
}
void Access(int u) {
for(int x = 0 ; u ; x = u , u = fa(u)) {
Splay(u);
rc(u) = x;
update(u);
}
}
void Makeroot(int u) {
Access(u);Splay(u);reverse(u);
}
void Link(int u,int v) {
Makeroot(u);Makeroot(v);Splay(v);fa(v) = u;
}
void Cut(int u,int v) {
Makeroot(u);Access(v);Splay(u);
if(rc(u) == v) {rc(u) = 0;fa(v) = 0;update(u);}
}
int dfs(int u) {
if(val(u) == minq(u)) return u;
pushdown(u);
if(minq(lc(u)) == minq(u)) return dfs(lc(u));
else return dfs(rc(u));
}
int Query(int u,int v) {
Makeroot(u);Access(v);Splay(u);
return dfs(u);
}
bool Connected(int u,int v) {
Makeroot(u);Access(v);Splay(u);
int p = u;
while(rc(p)) p = rc(p);
if(p == v) return true;
return false;
}
}
using lct::Link;
using lct::Cut;
using lct::Makeroot;
using lct::Query;
using lct::Connected;
using lct::tr;
void Init() {
read(N);read(M);
tot = N;
lct::Init();
for(int i = 1 ; i <= M ; ++i) {
read(op[i]);read(x[i]);read(y[i]);
if(op[i] == 0) {
id[i] = ++tot;pos[tot] = i;
t[x[i]][y[i]] = t[y[i]][x[i]] = id[i];
tr[tot].val = tr[tot].minq = M + 1;
}
if(op[i] == 1) {
int k = t[x[i]][y[i]];
tr[k].val = tr[k].minq = i;
id[i] = k;
}
}
}
void Solve() {
for(int i = 1 ; i <= M ; ++i) {
if(op[i] == 0) {
if(!Connected(x[i],y[i])) {
Link(x[i],id[i]);Link(id[i],y[i]);
}
else {
int t = Query(x[i],y[i]);
if(lct::tr[t].val < lct::tr[id[i]].val) {
Cut(t,x[pos[t]]);Cut(t,y[pos[t]]);
Link(id[i],x[i]);Link(id[i],y[i]);
}
}
}
else if(op[i] == 1) {
Cut(x[i],id[i]);Cut(y[i],id[i]);
}
else {
if(Connected(x[i],y[i])) puts("Y");
else puts("N");
}
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
return 0;
}
【LOJ】#121. 「离线可过」动态图连通性的更多相关文章
- LOJ 121 「离线可过」动态图连通性——LCT维护删除时间最大生成树 / 线段树分治
题目:https://loj.ac/problem/121 离线,LCT维护删除时间最大生成树即可.注意没有被删的边的删除时间是 m+1 . 回收删掉的边的节点的话,空间就可以只开 n*2 了. #i ...
- LOJ#121. 「离线可过」动态图连通性(线段树分治)
题意 板子题,题意很清楚吧.. Sol 很显然可以直接上LCT.. 但是这题允许离线,于是就有了一个非常巧妙的离线的做法,好像叫什么线段树分治?? 此题中每条边出现的位置都可以看做是一段区间. 我们用 ...
- loj#121.「离线可过」动态图连通性
题面 话说#122怎么做啊 题解 我的\(\mathrm{LCT}\)水平极差,连最小生成树都快忘了,赶紧复习一下 做法和这篇是一样的 这道题还可以练习线段树分治 还可以练习ETT 果然是道吼题 代码 ...
- LOJ #121. 「离线可过」动态图连通性 LCT维护最大生成树
这个还是比较好理解的. 你考虑如果所有边构成一棵树的话直接用 LCT 模拟一波操作就行. 但是可能会出现环,于是我们就将插入/删除操作按照时间排序,然后依次进行. 那么,我们就要对我们维护的生成树改变 ...
- 【LOJ121】「离线可过」动态图连通性
[LOJ121]「离线可过」动态图连通性 题面 LOJ 题解 线段树分治的经典应用 可以发现每个边出现的时间是一个区间 而我们每个询问是一个点 所以我们将所有边的区间打到一颗线段树上面去 询问每个叶子 ...
- LOJ121 「离线可过」动态图连通性
思路 动态图连通性的板子,可惜我不会在线算法 离线可以使用线段树分治,每个边按照存在的时间插入线段树的对应节点中,最后再dfs一下求出解即可,注意并查集按秩合并可以支持撤销操作 由于大量使用STL跑的 ...
- 「LOJ 121」「离线可过」动态图连通性「按时间分治 」「并查集」
题意 你要维护一张\(n\)个点的无向简单图.你被要求执行\(m\)条操作,加入删除一条边及查询两个点是否连通. 0:加入一条边.保证它不存在. 1:删除一条边.保证它存在. 2:查询两个点是否联通. ...
- LOJ 546: 「LibreOJ β Round #7」网格图
题目传送门:LOJ #546. 题意简述: 题目说的很清楚了. 题解: 将不包含起点或障碍物的连续的行或列缩成一行或一列,不会影响答案. 处理过后,新的网格图的行数和列数最多为 \(2k + 3\). ...
- LOJ121 【离线可过】动态图连通性
题目链接:戳我 [线段树分治版本代码] 这里面的线段树是时间线段树,每一个节点都要开一个vector,记录当前时间区间中存在的边的标号qwq #include<iostream> #inc ...
随机推荐
- HGOI2010816 (NOIP 提高组模拟赛 day1)
Day1 210pts(含T1莫名的-10pts和T3莫名的-30pts) 100+70+40=210 rank 29 这道题第一眼看是字符串匹配问题什么KMP啊,又想KMP不会做啊,那就RK Has ...
- 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...
- 使用Metasploit绕过UAC的多种方法
一.用户帐户控制(UAC)简介 在本文中,我们将简要介绍一下用户帐户控制,即UAC.我们还将研究它如何潜在地保护免受恶意软件的攻击并忽略UAC提示可能给系统带来的一些问题. 1.什么是用户帐户控制 ...
- ASP.NET MVC项目框架快速搭建实战
MVC项目搭建笔记---- 项目框架采用ASP.NET MVC+Entity Framwork+Spring.Net等技术搭建,采用”Domain Model as View Model“的MVC开发 ...
- 解题:APIO 2018 铁人两项
题面 建立圆方树,考虑所有路径,发现路径上原来的点双(现在的方点)里的点都可以做中间点.但是路径上被方点夹着的圆点被计重了,要扣掉:枚举的两个端点也被算进去了,要扣掉.所以直接将方点权值设为点双大小, ...
- CGI浏览器与服务器的交互
一直在做项目,跟着写前端后端,却没有思考一个问题:前端和后端为什么能够进行通信?为什么能够将HTML页面的内容传输给后台,然后又将结果反馈给前端? 寒假偶尔看到了这个问题,也解决了我的疑惑,这是基于C ...
- HTTP header location 重定向 URL
http头信息 头信息的作用很多,最主要的有下面几个:1.跳转当浏览器接受到头信息中的 Location: xxxx 后,就会自动跳转到 xxxx 指向的URL地址,这点有点类似用 js 写跳转.但是 ...
- bzoj千题计划189:bzoj1867: [Noi1999]钉子和小球
http://www.lydsy.com/JudgeOnline/problem.php?id=1867 dp[i][j] 落到(i,j)的方案数 dp[i][j]=0.5*dp[i-1][j] ...
- poj 2947 Widget Factory (高斯消元解同余方程组+判断无解、多解)
http://poj.org/problem?id=2947 血泪史: CE:poj的string类型要加string库,swap不能直接交换数组 WA: x[m-1]也有可能<3啊O(≧口≦) ...
- 给定一个整数,求解该整数最少能用多少个Fib数字相加得到
一,问题描述 给定一个整数N,求解该整数最少能用多少个Fib数字相加得到 Fib数列,就是如: 1,1,2,3,5,8,13.... Fib数列,满足条件:Fib(n)=Fib(n-1)+Fib(n- ...