轻松看懂机器学习十大常用算法 (Machine Learning Top 10 Commonly Used Algorithms)
通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题。
每个算法都看了好几个视频,挑出讲的最清晰明了有趣的,便于科普。
以后有时间再对单个算法做深入地解析。
今天的算法如下:
- 决策树
- 随机森林算法
- 逻辑回归
- SVM
- 朴素贝叶斯
- K最近邻算法
- K均值算法
- Adaboost 算法
- 神经网络
- 马尔可夫
1. 决策树
根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。

2. 随机森林
在源数据中随机选取数据,组成几个子集

S 矩阵是源数据,有 1-N 条数据,A B C 是feature,最后一列C是类别

由 S 随机生成 M 个子矩阵

这 M 个子集得到 M 个决策树
将新数据投入到这 M 个树中,得到 M 个分类结果,计数看预测成哪一类的数目最多,就将此类别作为最后的预测结果

3. 逻辑回归
当预测目标是概率这样的,值域需要满足大于等于0,小于等于1的,这个时候单纯的线性模型是做不到的,因为在定义域不在某个范围之内时,值域也超出了规定区间。

所以此时需要这样的形状的模型会比较好

那么怎么得到这样的模型呢?
这个模型需要满足两个条件 大于等于0,小于等于1
大于等于0 的模型可以选择 绝对值,平方值,这里用 指数函数,一定大于0
小于等于1 用除法,分子是自己,分母是自身加上1,那一定是小于1的了

再做一下变形,就得到了 logistic regression 模型

通过源数据计算可以得到相应的系数了

最后得到 logistic 的图形

4. SVM
support vector machine
要将两类分开,想要得到一个超平面,最优的超平面是到两类的 margin 达到最大,margin就是超平面与离它最近一点的距离,如下图,Z2>Z1,所以绿色的超平面比较好

将这个超平面表示成一个线性方程,在线上方的一类,都大于等于1,另一类小于等于-1

点到面的距离根据图中的公式计算

所以得到 total margin 的表达式如下,目标是最大化这个 margin,就需要最小化分母,于是变成了一个优化问题

举个栗子,三个点,找到最优的超平面,定义了 weight vector=(2,3)-(1,1)

得到 weight vector 为(a,2a),将两个点代入方程,代入(2,3)另其值=1,代入(1,1)另其值=-1,求解出 a 和 截矩 w0 的值,进而得到超平面的表达式。

a 求出来后,代入(a,2a)得到的就是 support vector
a 和 w0 代入超平面的方程就是 support vector machine
5. 朴素贝叶斯
举个在 NLP 的应用
给一段文字,返回情感分类,这段文字的态度是positive,还是negative

为了解决这个问题,可以只看其中的一些单词

这段文字,将仅由一些单词和它们的计数代表

原始问题是:给你一句话,它属于哪一类
通过 bayes rules 变成一个比较简单容易求得的问题

问题变成,这一类中这句话出现的概率是多少,当然,别忘了公式里的另外两个概率
栗子:单词 love 在 positive 的情况下出现的概率是 0.1,在 negative 的情况下出现的概率是 0.001

6. K最近邻
k nearest neighbours
给一个新的数据时,离它最近的 k 个点中,哪个类别多,这个数据就属于哪一类
栗子:要区分 猫 和 狗,通过 claws 和 sound 两个feature来判断的话,圆形和三角形是已知分类的了,那么这个 star 代表的是哪一类呢

k=3时,这三条线链接的点就是最近的三个点,那么圆形多一些,所以这个star就是属于猫

7. K均值
想要将一组数据,分为三类,粉色数值大,黄色数值小
最开心先初始化,这里面选了最简单的 3,2,1 作为各类的初始值
剩下的数据里,每个都与三个初始值计算距离,然后归类到离它最近的初始值所在类别

分好类后,计算每一类的平均值,作为新一轮的中心点

几轮之后,分组不再变化了,就可以停止了


8. Adaboost
adaboost 是 bosting 的方法之一
bosting就是把若干个分类效果并不好的分类器综合起来考虑,会得到一个效果比较好的分类器。
下图,左右两个决策树,单个看是效果不怎么好的,但是把同样的数据投入进去,把两个结果加起来考虑,就会增加可信度

adaboost 的栗子,手写识别中,在画板上可以抓取到很多 features,例如 始点的方向,始点和终点的距离等等

training 的时候,会得到每个 feature 的 weight,例如 2 和 3 的开头部分很像,这个 feature 对分类起到的作用很小,它的权重也就会较小

而这个 alpha 角 就具有很强的识别性,这个 feature 的权重就会较大,最后的预测结果是综合考虑这些 feature 的结果

9. 神经网络
Neural Networks 适合一个input可能落入至少两个类别里
NN 由若干层神经元,和它们之间的联系组成
第一层是 input 层,最后一层是 output 层
在 hidden 层 和 output 层都有自己的 classifier

input 输入到网络中,被激活,计算的分数被传递到下一层,激活后面的神经层,最后output 层的节点上的分数代表属于各类的分数,下图例子得到分类结果为 class 1
同样的 input 被传输到不同的节点上,之所以会得到不同的结果是因为各自节点有不同的weights 和 bias
这也就是 forward propagation

10. 马尔可夫
Markov Chains 由 state 和 transitions 组成
栗子,根据这一句话 ‘the quick brown fox jumps over the lazy dog’,要得到 markov chain
步骤,先给每一个单词设定成一个状态,然后计算状态间转换的概率

这是一句话计算出来的概率,当你用大量文本去做统计的时候,会得到更大的状态转移矩阵,例如 the 后面可以连接的单词,及相应的概率

生活中,键盘输入法的备选结果也是一样的原理,模型会更高级
轻松看懂机器学习十大常用算法 (Machine Learning Top 10 Commonly Used Algorithms)的更多相关文章
- GJM : 数据结构 - 轻松看懂机器学习十大常用算法 [转载]
转载请联系原文作者 需要获得授权,非法转载 原文作者将享受侵权诉讼 文/不会停的蜗牛(简书作者)原文链接:http://www.jianshu.com/p/55a67c12d3e9 通过本篇文章可以 ...
- 机器学习十大常用算法(CITE 不会停的蜗牛 ) interesting
算法如下: 决策树 随机森林算法 逻辑回归 SVM 朴素贝叶斯 K最近邻算法 K均值算法 Adaboost 算法 神经网络 马尔可夫 1. 决策树 根据一些 feature 进行分类,每个节点提一个问 ...
- 看完它,你就全懂了十大Wifi芯片原厂!
看完它,你就全懂了十大Wifi芯片原厂! 来源:全球物联网观察 概要:不知不觉中,WiFi几乎已攻占了整个世界.现在只要你上网,可能就离不开WiFi了. 2014年是物联网WiFi市场关键的转折期 ...
- 机器学习——十大数据挖掘之一的决策树CART算法
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第23篇文章,我们今天分享的内容是十大数据挖掘算法之一的CART算法. CART算法全称是Classification ...
- 机器学习十大算法 之 kNN(一)
机器学习十大算法 之 kNN(一) 最近在学习机器学习领域的十大经典算法,先从kNN开始吧. 简介 kNN是一种有监督学习方法,它的思想很简单,对于一个未分类的样本来说,通过距离它最近的k个" ...
- 排序算法——(2)Python实现十大常用排序算法
上期为大家讲解了排序算法常见的几个概念: 相关性:排序时是否需要比较元素 稳定性:相同元素排序后是否可能打乱 时间空间复杂度:随着元素增加时间和空间随之变化的函数 如果有遗忘的同学可以看排序算法——( ...
- 机器学习十大算法之KNN(K最近邻,k-NearestNeighbor)算法
机器学习十大算法之KNN算法 前段时间一直在搞tkinter,机器学习荒废了一阵子.如今想重新写一个,发现遇到不少问题,不过最终还是解决了.希望与大家共同进步. 闲话少说,进入正题. KNN算法也称最 ...
- SEO站长必备的十大常用搜索引擎高级指令
作为一个seo人员,不懂得必要的搜索引擎高级指令,不是一个合格的seo.网站优化技术配合一些搜索引擎高级指令将使得优化工作变得简单.今日就和大家聊聊SEO站长必备的十大常用搜索引擎高级指令的那些事儿. ...
- 十大排序算法JavaScript实现总结
花费了几周的时间断断续续的练习和模仿与使用JavaScript代码实现了十大排序算法. 里面有每种算法的动图和静态图片演示,看到图片可以自己先按照图片的思路实现一下. github中正文链接,点击查看 ...
随机推荐
- Jmeter打开url时提示“请在微信客户端打开链接问题”
前提: 1.HTTP信息头管理器已添加了“User-Agent” 2.工作台添加HTTP代理服务器(注意端口和客户端填写的代理端口要一致) 但是运行的时候总是提示“请在微信客户端打开链接” 查阅各种资 ...
- 高阶篇:4.2)DFMEA设计失效模式和失效后果分析-总章
本章目的:了解FMEA和DFMEA的概念. 1.什么是FMEA(what) 潜在的失效模式及后果分析(Potential Failure Mode and Effects Analysis,简称FME ...
- 洛谷 P3201 [HNOI2009]梦幻布丁(启发式合并)
题面 luogu 题解 什么是启发式合并? 小的合并到大的上面 复杂度\(O(nlogn)\) 这题颜色的修改,即是两个序列的合并 考虑记录每个序列的\(size\) 小的合并到大的 存序列用链表 但 ...
- mysql安装启动 ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: NO)
首次安装mysql 启动 mysql -uroot 以下错误: ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using ...
- 读取Cert格式证书的密钥
不想存储Cert证书内容,只想存储证书密钥,可通过以下实现读取证书的密钥出来: package com.zat.ucop.service.util; import sun.misc.BASE64Enc ...
- signed char型内存位bit表示
signed char型内存 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f 90 91 92 93 94 95 96 97 98 99 9a 9b 9 ...
- android TCP 和 UDP总结(转)
之前写过一些关于TCP和UDP数据传输的代码,比如使用TCP传输音视频数据包,P2P打洞中使用UDP等.写好之后就直接丢下了,没有总结下都.最近准备找工作,再拿来温习下. 1.还是先说点啥 暂时把自己 ...
- oracle系统包——dbms_transaction用法
用于在过程,函数和包中执行sql事务处理语句. 1.read_only用于开始只读事务,其作用与sql语句set transaction read only完全相同2.read_write用于开始读写 ...
- 【微信小程序】采坑之scroll-view组件
一.摘要 今天在使用scroll-view组件的时候发现结果跟预想的不一样.其实也不是第一次用了,同样的写法却出现了意料之外的效果,所以认定是bug了.博主使用的是2.3.0版本,所以之前的版本应该也 ...
- html中超链接的target属性
<a> 标签的 target 属性规定在何处打开链接文档.(target就是目标的意思) 一共有(4+1种选择): 用法:<a target="value"> ...
