在region proposal阶段采用不同的iou。

第一幅图,不同颜色的线是用不同的region proposal的iou阈值,横坐标是region proposal生成的框与gt的原始iou,纵坐标是未经过训练的框经过bounding box regression后生成的新框与gt的iou,发现0.5的iou阈值对0.5的的提升更好,0.6的对0.6到0.75的好,0.7对0.75以上的效果好。

第二幅图,不同颜色的线是用不同的region proposal的iou阈值,横坐标是region proposal生成的框与gt的原始iou,纵坐标是不同iou框对应的ap值。可以看到0.6的性能在提升,但变成0.7后性能反而下降了。

一般来说,0.7的iou生成的正样本的框的质量更高,应该性能更好,但ap值却在下降。原因在于,iou在0.5时,正样本大多集中在0.5到0.6之间,如果你阈值选在0.7,正样本数量大大减少,造成了过拟合。

红色的数字应该是代表的这个iou之上的正样本占总的region proposal的比例

总结起来,就是:

  • cascaded regression不断改变了proposal的分布,并且通过调整阈值的方式重采样
  • cascaded在train和inference时都会使用,并没有偏差问题
  • cascaded重采样后的每个检测器,都对重采样后的样本是最优的,没有mismatch问题

https://zhuanlan.zhihu.com/p/35882192

https://blog.csdn.net/qq_21949357/article/details/80046867

代码实现的问题:

代码的地址:https://github.com/zhaoweicai/cascade-rcnn/tree/master/examples/voc

1.proposals这个layer层有个iou thr = 0.7,这个不是多级级联重采样选择正负样本的的iou,这个是nms的iou,即过滤的iou

2.在test的时候,在第二阶段多出现了一个分支,并且这两个分支的名字和train的对应不上,第三阶段也出现相似的情况,3个分支,如第一幅图。拿第二阶段来举例,第一个分支对应的是第一阶段的参数,第二个分支对应的是第二阶段的参数,看着layer名字不一样,但具体看里面的参数赋值就发现第一个分支就是用的第一阶段的参数,如第二幅图

3.test的预测,在每一阶段都进行了label和bouding box的预测(label是多个分支进行eltwise相加得到,bouding box只在当前stage的分支计算得到),最终输出的时候是把这3个stage的值进行加权求和,最简单的当然是每个结果乘以1/3然后相加。这也同时引发一个问题,是否需要改变权值来获得最优的结果?

cascade rcnn的更多相关文章

  1. Cascade R-CNN论文讲解(转载)

    转载链接:https://blog.csdn.net/qq_21949357/article/details/80046867 论文思想:为了解决IOU设置带来的最终的AP值,作者引入了cascade ...

  2. cascade rcnn论文总结

    1.bouding box regression总结: rcnn使用l2-loss 首先明确l2-loss的计算规则: L∗=(f∗(P)−G∗)2,∗代表x,y,w,h    整个loss : L= ...

  3. 【目标检测】Cascade R-CNN 论文解析

    目录 0. 论文链接 1. 概述 2. 网络结构的合理性 3. 网络结构 4. 参考链接 @ 0. 论文链接 Cascade R-CNN 1. 概述   这是CVPR 2018的一篇文章,这篇文章也为 ...

  4. Cascade R-CNN目标检测

    成功的因素: 1.级联而非并联检测器 2.提升iou阈值训练级联检测器的同时不带来负面影响 核心思想: 区分正负样本的阈值u取值影响较大,加大iou阈值直观感受是可以增加准确率的,但是实际上不是,因为 ...

  5. 目标检测 | 经典算法 Cascade R-CNN: Delving into High Quality Object Detection

    作者从detector的overfitting at training/quality mismatch at inference问题入手,提出了基于multi-stage的Cascade R-CNN ...

  6. Anaconda中安装Cascade RCNN(Detectron)的若干问题

    安装参考https://github.com/zhaoweicai/Detectron-Cascade-RCNN/blob/master/INSTALL.md 1.对于在 python detectr ...

  7. 论文阅读笔记五十三:Libra R-CNN: Towards Balanced Learning for Object Detection(CVPR2019)

    论文原址:https://arxiv.org/pdf/1904.02701.pdf github:https://github.com/OceanPang/Libra_R-CNN 摘要 相比模型的结构 ...

  8. 论文阅读笔记三十七:Grid R-CNN(CVPR2018)

    论文源址:https://arxiv.org/abs/1811.12030 开源代码:未公开 摘要 本文提出了目标检测网络Grid R-CNN,其基于网格定位机制实现准确的目标检测.传统方法主要基于回 ...

  9. 图像分割-Mask Scoring R-CNN

    转载:https://zhuanlan.zhihu.com/p/58291808 论文链接:https://arxiv.org/abs/1903.00241 代码链接:https://github.c ...

随机推荐

  1. 在WPF中UserControl

    在这里我们将将打造一个UserControl(用户控件)来逐步讲解如何在WPF中自定义控件,并将WPF的一些新特性引入到自定义控件中来.我们制作了一个带语音报时功能的钟表控件, 效果如下: 在VS中右 ...

  2. C3P0数据库连接池的java实现

    1.配置准备 导入jar包 c3p0-0.9.2-pre1.jar mchange-commons-0.2.jar 数据库驱动包,如:mysql-connector-java-5.1.28-bin.j ...

  3. Java - Latch和Barrier的区别

    之所以把Latch与Barrier放在一起比较是因为他们给人一种相似的感觉. 他们都是阻塞一些行为直至某个事件发生,但Latch是等待某个事件发生,而Barrier是等待线程. 先比较一下JCIP中对 ...

  4. .NET的EF框架中:在应用程序配置文件中找不到名为“”的连接字符串问题

    今天在使用EF Code First框架时,当把模型都定义好了,想通过程序包管理控制台利用enable-migrations –force来生成数据库表的时候报错了,如下: 找不到连接字符串,但是我仔 ...

  5. json数据发送时浏览器提示“保存”解决

    数据以json形式发送的时候,部分浏览器不能直接解析,而是提示是否保存,nodejs的express应用中可以通过如下代码解决该问题: router.get('/', function (req, r ...

  6. 二:Nexus知识

    Nexus访问 Http://localhost:8080/nexus Nexus登陆 用户:admin 密码:admin123 Nexus仓库 nexus的仓库类型分为以下四种: group: 仓库 ...

  7. 一些在线开发手册api文档收藏

    java JavaSE8 api:https://docs.oracle.com/javase/8/docs/api/ JavaSE7 api:http://docs.oracle.com/javas ...

  8. Gradle sync failed: Cannot set the value of read-only property 'outputFile'

    错误 Gradle sync failed: Cannot set the value of read-only property 'outputFile' 原因 gradle打包,自定义apk名称代 ...

  9. hdu 1011 树形背包

    http://blog.csdn.net/libin56842/article/details/9876503 这道题和poj 1155的区别是: poj1155是边的价值,所以从边的关系入手 hdu ...

  10. RabbitMQ基础--总结

    一. RabbitMQ的五种工作场景: 1. 单发单收 2. 单发送多接收 +++++++++++++++++++++前面两种没有使用exchange++++++++++++++++++ 3. Pub ...