题目链接:

Fluorescent

Time Limit: 3000/3000 MS (Java/Others)    

Memory Limit: 512000/512000 K (Java/Others)

Problem Description
Matt, a famous adventurer who once defeated a pack of dire wolves alone, found a lost court. Matt finds that there are N fluorescent lights which seem to be the stars from the firmament. What’s more, there are M switches that control these fluorescent lights. Each switch is connected to a group of lights. When Matt touches a switch, all the lights connected to it will change their states (turning the dark on, turning the bright off).

Initially, all the fluorescent lights are dark. For each switch, Matt will touch it with probability 1 .

As a curious gentleman, Matt wants to calculate E[X3], where X represents the number of bright lights at the end, E[X3] represents the expectation of cube of X.

 
Input
The first line contains only one integer T , which indicates the number of test cases.

For each test case, the first line contains N, M (1 ≤ N, M ≤ 50), denoting the number of fluorescent lights (numbered from 1 to N ) and the number of switches (numbered from 1 to M ).

M lines follow. The i-th line begins with an integer Ki (1 ≤ Ki ≤ N ). Ki distinct integers lij(1 ≤ lij ≤ N ) follow, denoting the fluorescent lights that the i-th switch controls.

 
Output
For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y is the answer. To avoid rounding error, the answer you should output is:

E[X3] × 2M mod (109 + 7)

 
Sample Input
 
2
2 2
1 1
2 1 2
3 1
3 1 2 3
 
Sample Output
 
Case #1: 10
Case #2: 27
 
题意:一些灯和一些开关,每个开关都能控制一部分灯,求在开关的所有状态亮灯个数立方和
 
思路:ans=sigma(x^3) ,把x^3拆开就是(x1+x2+...xn)*(x1+x2+...+xn)*(x1+x2+...+xn),ans=sigma(∑∑∑(xi*xj*xk))=∑∑∑(sigma(使得xixjxk同时亮的状态数))
这样可以避免枚举2^m个状态,因为只有三个灯亮,状态为2^3,所以复杂度约为O(n^3*m))
 
AC代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int n,m,a[51][51],k[50];
LL dp[51][8];
const LL mod=1e9+7;
LL solve(int u,int v,int w)
{
memset(dp,0,sizeof(dp));
dp[0][0]=1;
for(int i=1;i<=m;i++)
{
int tep=0;
for(int j=1;j<=k[i];j++)
{
if(a[i][j]==u)tep+=1;
if(a[i][j]==v)tep+=2;
if(a[i][j]==w)tep+=4;
}
for(int j=0;j<8;j++)dp[i][j]=dp[i-1][j];
for(int j=0;j<8;j++)dp[i][j^tep]+=dp[i-1][j],dp[i][j^tep]%=mod;
}
return dp[m][7]%mod;
}
int main()
{
int T,Case=0;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d",&k[i]);
for(int j=1;j<=k[i];j++)scanf("%d",&a[i][j]);
}
LL ans=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
ans=ans+solve(i,j,k),ans%=mod;
printf("Case #%d: %lld\n",++Case,ans);
}
return 0;
}

  

hdu-5117 Fluorescent(状压dp)的更多相关文章

  1. HDU - 5117 Fluorescent(状压dp+思维)

    原题链接 题意 有N个灯和M个开关,每个开关控制着一些灯,如果按下某个开关,就会让对应的灯切换状态:问在每个开关按下与否的一共2^m情况下,每种状态下亮灯的个数的立方的和. 思路1.首先注意到N< ...

  2. HDU 4284Travel(状压DP)

    HDU 4284    Travel 有N个城市,M条边和H个这个人(PP)必须要去的城市,在每个城市里他都必须要“打工”,打工需要花费Di,可以挣到Ci,每条边有一个花费,现在求PP可不可以从起点1 ...

  3. HDU 4336 容斥原理 || 状压DP

    状压DP :F(S)=Sum*F(S)+p(x1)*F(S^(1<<x1))+p(x2)*F(S^(1<<x2))...+1; F(S)表示取状态为S的牌的期望次数,Sum表示 ...

  4. HDU 3001 Travelling ——状压DP

    [题目分析] 赤裸裸的状压DP. 每个点可以经过两次,问经过所有点的最短路径. 然后写了一发四进制(真是好写) 然后就MLE了. 懒得写hash了. 改成三进制,顺利A掉,时间垫底. [代码] #in ...

  5. hdu 4114(状压dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4114 思路:首先是floyd预处理出任意两点之间的最短距离.dp[state1][state2][u] ...

  6. HDU 3091 - Necklace - [状压DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3091 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

  7. HDU 3811 Permutation 状压dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3811 Permutation Time Limit: 6000/3000 MS (Java/Othe ...

  8. HDU 5838 (状压DP+容斥)

    Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...

  9. hdu 4628 Pieces 状压dp

    题目链接 枚举所有状态, 1表示这个字符还在原来的串中, 0表示已经取出来了. 代码中j = (j+1)|i的用处是枚举所有包含i状态的状态. #include <iostream> #i ...

随机推荐

  1. while循环中的break、continue和else

    break:直接结束当前循环然后跳到下面的语句.break之后在循环外continue:结束本次循环,跳到下次循环.continue之后依然还在循环内else:这是while循环所特有,当循环结束之后 ...

  2. springmvc 自定义拦截器

    <mvc:interceptors> <!-- 配置自定义的拦截器 --> <bean class="com.atguigu.springmvc.interce ...

  3. Spring MVC 了解WebApplicationContext中特殊的bean类型

    Spring MVC 了解WebApplicationContext中特殊的bean类型 Spring的DispatcherServlet使用了特殊的bean来处理请求.渲染视图等,这些特定的bean ...

  4. Dispose 与 close 方法 的区别

    Dispose : 释放 托管 与 非托管资源. Finalize : 释放 非托管资源. Close: 关闭资源后,可以再次使用资源.

  5. poj2996

    /*排序函数要写对,优先级:K,Q,R,B,N,P 白色的:如果优先级一样,那么按照行数大的优先,如果行数一样,那么列数小的优先 黑色的:如果优先级一样,那么按照行数小的优先,如果行数一样,那么列数小 ...

  6. Android 电池关机充电

    android 电池(一):锂电池基本原理篇 android 电池(二):android关机充电流程.充电画面显示 android 电池(三):android电池系统 android电池(四):电池 ...

  7. 【笔记】Maven使用入门

    参考<maven实战> 1.编写POM 2.编写主代码 3.编写测试代码 4.打包和运行 具体如下: 1.编写POM. <!-- XML头,指定了该xml文档的版本和编辑方式 --& ...

  8. LVS持久化

    在实际应用场景中,轮询调度并不都是适用的.有些情况下,需要我们把同一个会话的请求都调度给一个RS节点.这时候就需要LVS提供持久化的能力,能够实现会话保持. 一.LVS的持久化主要包括以下两个方面. ...

  9. 智能指针 auto_ptr、scoped_ptr、shared_ptr、weak_ptr

    什么是RAII? RAII是Resource Acquisition Is Initialization的简称,是C++语言的一种管理资源.避免泄漏的惯用法. RAII又叫做资源分配即初始化,即:定义 ...

  10. python3给socket模块设置代理

    最近需要在公司学习socket编程,但是不能直接连接外网,需要设置一个代理才能正常访问.报错示例: import socket def blocking(wd): sock = socket.sock ...