题目链接:http://poj.org/problem?id=2987

思路:标准的最大权闭合图,构图:从源点s向每个正收益点连边,容量为收益;从每个负收益点向汇点t连边,容量为收益的相反数;对于i是j的上司,连边i->j,容量为inf。最大收益 = 正收益点权和 - 最小割 = 正收益点权和 - 最大流(胡波涛论文上有证明)。这题的关键是如何在最小割的前提下求出最少的割边数目,可以从源点对残量网络进行一次DFS,每个割都会将源汇隔开,所以从源点DFS下去一定会因为碰到某个割而无法前进,用反证法易知这时遍历过的点数就是S集的最少点数。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define MAXN 5555
#define MAXM 5555555
#define inf 1<<30 struct Edge{
int v,cap,next;
}edge[MAXM]; int n,m,NE,vs,vt,NV,num;
int head[MAXN]; void Insert(int u,int v,int cap)
{
edge[NE].v=v;
edge[NE].cap=cap;
edge[NE].next=head[u];
head[u]=NE++; edge[NE].v=u;
edge[NE].cap=;
edge[NE].next=head[v];
head[v]=NE++;
} int level[MAXN],gap[MAXN];
void bfs(int vt)
{
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int>que;
que.push(vt);
while(!que.empty()){
int u=que.front();
que.pop();
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(level[v]<){
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
}
} int pre[MAXN],cur[MAXN];
long long SAP(int vs,int vt)
{
bfs(vt);
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
long long maxflow=;
int u=pre[vs]=vs,aug=inf;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap>&&level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
aug=min(aug,edge[i].cap);
if(v==vt){
maxflow+=aug;
for(u=pre[v];v!=vs;v=u,u=pre[u]){
edge[cur[u]].cap-=aug;
edge[cur[u]^].cap+=aug;
}
aug=inf;
}
break;
}
}
if(flag)continue;
int minlevel=NV;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap>&&level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==)break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return maxflow;
} bool mark[MAXN];
void dfs(int u)
{
mark[u]=true;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap>&&!mark[v]){
num++;
dfs(v);
}
}
} int main()
{
int u,v,w;
long long sum,ans;
while(~scanf("%d%d",&n,&m)){
NE=;
memset(head,-,sizeof(head));
vs=,vt=n+,NV=n+;
sum=;
for(int i=;i<=n;i++){
scanf("%d",&w);
if(w>){
Insert(vs,i,w);
sum+=w;
}else
Insert(i,vt,-w);
}
while(m--){
scanf("%d%d",&u,&v);
Insert(u,v,inf);
}
ans=sum-SAP(vs,vt);
num=;
memset(mark,false,sizeof(mark));
dfs(vs);
printf("%d %lld\n",num,ans);
}
return ;
}

poj 2987(最大权闭合图+割边最少)的更多相关文章

  1. poj 2987 最大权闭合图

    Language: Default Firing Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 8744   Accept ...

  2. hdu 2987最大权闭合图模板类型题

    /* 最大权闭合图模板类型的题,考验对知识概念的理解. 题意:如今要辞退一部分员工.辞退每个员工能够的到一部分利益(能够是负的),而且辞退员工,必须辞退他的下属.求最大利益和辞退的最小人数. 最大权闭 ...

  3. POJ 2987:Firing(最大权闭合图)

    http://poj.org/problem?id=2987 题意:有公司要裁员,每裁一个人可以得到收益(有正有负),而且如果裁掉的这个人有党羽的话,必须将这个人的所有党羽都裁除,问最少的裁员人数是多 ...

  4. POJ 2987 Firing 网络流 最大权闭合图

    http://poj.org/problem?id=2987 https://blog.csdn.net/u014686462/article/details/48533253 给一个闭合图,要求输出 ...

  5. poj 2987 Firing 最大权闭合图

    题目链接:http://poj.org/problem?id=2987 You’ve finally got mad at “the world’s most stupid” employees of ...

  6. POJ 2987 Firing【最大权闭合图-最小割】

    题意:给出一个有向图,选择一个点,则要选择它的可以到达的所有节点.选择每个点有各自的利益或损失.求最大化的利益,以及此时选择人数的最小值. 算法:构造源点s汇点t,从s到每个正数点建边,容量为利益.每 ...

  7. POJ 2987 Firing(最大权闭合图)

    [题目链接] http://poj.org/problem?id=2987 [题目大意] 为了使得公司效率最高,因此需要进行裁员, 裁去不同的人员有不同的效率提升效果,当然也有可能是负的效果, 如果裁 ...

  8. POJ 2987 Firing(最大流最小割の最大权闭合图)

    Description You’ve finally got mad at “the world’s most stupid” employees of yours and decided to do ...

  9. POJ 3155 Hard Life 最大密度子图 最大权闭合图 网络流 二分

    http://poj.org/problem?id=3155 最大密度子图和最大权闭合图性质很相近(大概可以这么说吧),一个是取最多的边一个是取最多有正贡献的点,而且都是有选一种必须选另一种的限制,一 ...

随机推荐

  1. jQuery实现滚动栏一直处于最底部

    相信大家有时候在展示一些实时数据展示并且数据量非常大的时候,由于无法在同一页面看到最有效的数据,所以我们须要将滚动栏至于底部.以便我们看到最须要的数据和信息.这里非常明显的样例那拿windows的pi ...

  2. Simple Factory (简单工厂模式)

    简单工厂模式不是23种设计模式之一,简单工厂模式属于创建型模式, 又叫做静态工厂方法(Static Factory Method) 简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模 ...

  3. Image Based Lighting In UE3

    "IBL"全称为"Image-based Lighint",是一种伪装全局光照的方法.使用该方法可以获得较好的视觉效果并且可以达到实时渲染的目的. 实现的方法之 ...

  4. mybatis加入条件

    根据http://www.cnblogs.com/friends-wf/p/3799315.html搭建的环境 User.xml加入的 if where判断的 <!-- 根据条件查询一个用户 - ...

  5. C# 视频监控系列:学习地址汇总

    原文地址:http://www.cnblogs.com/over140/archive/2009/04/07/1429308.html 前言 对于视频监控系统大家应该是不陌生的,实施的路况信息.地铁. ...

  6. 纹理mag filter不能取GL_XXX_MIPMAP_XXXX

    今天遇到OpenGL error 0x0500错误,定位到 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, magFilter); 查看ma ...

  7. Nginx日志深入详解

    一.日志分类 Nginx日志主要分为两种:访问日志和错误日志.日志开关在Nginx配置文件(/etc/nginx/nginx.conf)中设置,两种日志都可以选择性关闭,默认都是打开的.1.访问日志 ...

  8. Atitit.js模块化 atiImport 的新特性javascript import

    Atitit.js模块化 atiImport 的新特性javascript import 1. 常见的js import规范amd ,cmd ,umd1 1.1. Require更多流行3 2. at ...

  9. nginx rewrite location 内置全局变量

    $args :这个变量等于请求行中的参数,同$query_string $content_length : 请求头中的Content-length字段. $content_type : 请求头中的Co ...

  10. OSGi规范概要

    目前最新的OSGi规范是2012年7月发布的Release 5,Version5.0(后文简称为R5.0)版本,该规范定义了Java模块化系统所涉及的各种场景(开发.打包.部署.更新和交互等),以及其 ...