对于i属于[1,n],i只能成为[1,n]中n/i个数的约数,易证。

 #include<stdio.h>
int n,i;
long long ans;
int main()
{
scanf("%d",&n);
for(i=;i<=n;i++)ans+=(long long)n/i;
printf("%lld\n",ans);return ;
}

【数论】bzoj1968 [Ahoi2005]COMMON 约数研究的更多相关文章

  1. bzoj千题计划170:bzoj1968: [Ahoi2005]COMMON 约数研究

    http://www.lydsy.com/JudgeOnline/problem.php?id=1968 换个角度 一个数可以成为几个数的约数 #include<cstdio> #incl ...

  2. BZOJ1968 [Ahoi2005]COMMON 约数研究 数论

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1968 题意概括 求 ΣF(i)   (1<=i<=n)N<=1000000 F( ...

  3. bzoj1968: [Ahoi2005]COMMON 约数研究(数论)

    计算每一个数的贡献就好了..O(N) n/i只有2*sqrtn个取值于是可以优化到O(sqrtn) #include<bits/stdc++.h> #define ll long long ...

  4. [日常摸鱼]bzoj1968 [Ahoi2005]COMMON 约数研究

    题意:记$f(n)$为$n$的约数个数,求$\sum_{i=1}^n f(i)$,$n \leq 10^6$. 我也不知道为什么我要来做这个- 直接枚举每个数会是哪些数的约数-复杂度$O(n log ...

  5. BZOJ1968 [Ahoi2005]COMMON 约数研究

    Description Input 只有一行一个整数 N(0 < N < 1000000). Output 只有一行输出,为整数M,即f(1)到f(N)的累加和. Sample Input ...

  6. [BZOJ1968][AHOI2005]COMMON约数研究 数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1968 直接计算每个因子的贡献就可以了. $Ans=\sum_{i=1}^n[\frac{n ...

  7. BZOJ1968: [Ahoi2005]COMMON 约数研究 线性筛

    按照积性函数的定义筛一下这个积性函数即可. #include <cstdio> #include <algorithm> #define N 1000004 #define s ...

  8. BZOJ 1968: [Ahoi2005]COMMON 约数研究

    1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2032  Solved: 1537[Submit] ...

  9. BZOJ 1968: [Ahoi2005]COMMON 约数研究 水题

    1968: [Ahoi2005]COMMON 约数研究 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...

随机推荐

  1. vue_使用npm搭建vue2.0脚手架开发环境

    前言: 在使用vue进行开发时需要搭建vue的运行环境,这里主要是使用淘宝镜像cnpm进行搭建vue的脚手架开发环境.主要是分为mac和window两个版本,两个环境的搭建都是大同小异. mac开发环 ...

  2. vim 常用的操作指令

    vim(vi improve).命令行下的一些常见操作: 移动光标: 0:将光标移动到该行的最前面: $:将光标移动到该行的最后面: G:移动到最后一行的开头: {/}:将光标移动到前面或者后面的{/ ...

  3. [hadoop][基本原理]zookeeper场景使用

    代码:https://github.com/xufeng79x/ZkClientTest 1. 简介 zookeeper的特性决定他适用到某些场景非常合适,比如典型的应用场景: 1.集群管理(Grou ...

  4. PHP的输出方式

    php中,用echo输出一个字符串有三种方式,分别是单引号,双引号和<<<方式.其中,单引号中的变量不会被解析,而会直接输出,而双引号和<<<时,变量会被解析.&l ...

  5. 手机meta标签(保存下来省的每次都找)

    手机网站Meta标签 手机端特有的Meta标签 1.<meta name="viewport" id="viewport" content="w ...

  6. SQL中判断值是否为NULL

    在 SQL 中,我们如果在操作数据库时使用 WHERE 子句判断一个列的值是否为 NULL,我们不能够使用 column_name=null 来进行判断,这是不正确的,我们应该使用 is null 来 ...

  7. Myeclipse实用快捷键总结

    alt+shift+J 为选中的类/方法添加注释 ctrl+T 显示选中类的继承树 ctrl+shift+X/Y 将选中的字符转换为大写/小写 ctrl+shift+R 打开资源 ctrl+shift ...

  8. 利用getBoundingClientRect()来实现div容器滚动固定

    ele.getBoundingClientRect()的方法是可以获得一个元素在整个视图窗口的位置 可以return的值有width,height,top,left,x,y,right,bottom ...

  9. CCF试题:高速公路(Targin)

    问题描述 某国有n个城市,为了使得城市间的交通更便利,该国国王打算在城市之间修一些高速公路,由于经费限制,国王打算第一阶段先在部分城市之间修一些单向的高速公路. 现在,大臣们帮国王拟了一个修高速公路的 ...

  10. window下线程同步之(Critical Sections(关键代码段、关键区域、临界区域)

    关键区域(CriticalSection) 临界区是为了确保同一个代码片段在同一时间只能被一个线程访问,与原子锁不同的是临界区是多条指令的锁定,而原子锁仅仅对单条操作指令有效;临界区和原子锁只能控制同 ...