【序列莫队+树状数组】BZOJ3289-Mato的文件管理
【题目大意】
一共有n份,每份有一个大小和一个编号。Mato每天随机选一个区间[l,r],拷贝出来(即对原序列不影响),给它们排序,并且每次只能交换相邻两份文件。问每天最少交换几次?
【思路】
显然,每天最少交换次数=[l,r]逆序对的个数。离散化后,用莫队离线查询,用树状数组来维护当前的区间。
假设我们已经知道[l,r]的逆序对的个数,怎样才能求出[l-1,r],[l+1,r],[l,r-1]和l[r+1]呢?
随便考虑序列3,5,2,4,7,6,8,已知[2,4]逆序对的个数为2对。[l-1,r]逆序对的个数有3对,即加上比3小的个数;[l+1,r]逆序对的个数有0对,即减去比5小的个数;[l,r-1]有1对,即减去比4大的数的个数;[l,r+1]有2对,即加上比7大的数的个数,由此可以得出结论:
①在一列数的后面添加一个数,逆序对数会增加 数列中比它大的数的个数。
②在一列数的后面删除一个数,逆序对数会减少 数列中比它大的数的个数。
③在一列数的前面添加一个数,逆序对数会增加 数列中比它小的数的个数。
④在一列数的前面删除一个数,逆序对数会减少 数列中比它小的数的个数。
时间复杂度为O(n^1.5*log(n))
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
struct node
{
int num,pos;
bool operator < (const node &x) const {return num<x.num;}
};
struct queries
{
int l,r,pos,id,ans;
};
const int MAXN=+;
int n,m,size[MAXN],e[MAXN];
node tmpsize[MAXN];
queries q[MAXN];
bool cmp(queries a,queries b)
{
return (a.pos==b.pos)?a.r<b.r:a.pos<b.pos;
} bool cmpid(queries a,queries b)
{
return a.id<b.id;
} int lowbit(int x)
{
return (x&(-x));
} int sum(int p)
{
int ret=;
while (p>)
{
ret+=e[p];
p-=lowbit(p);
}
return ret;
} void modify(int p,int x)
{
while (p<=n)
{
e[p]+=x;
p+=lowbit(p);
}
} void init()
{
scanf("%d",&n);
for (int i=;i<=n;i++)
{
scanf("%d",&tmpsize[i].num);
tmpsize[i].pos=i;
}
sort(tmpsize+,tmpsize+n+);
for (int i=,j=;i<=n;i++)
{
if (i== || tmpsize[i].num!=tmpsize[i-].num) j++;
size[tmpsize[i].pos]=j;
}
scanf("%d",&m);
int block=int(sqrt(n));
for (int i=;i<=m;i++)
{
scanf("%d%d",&q[i].l,&q[i].r);
q[i].id=i;
q[i].pos=(q[i].l-)/block+;
}
sort(q+,q+m+,cmp);
} void query()
{
memset(e,,sizeof(e));
int l=,r=,ans=;
for (int i=;i<=m;i++)
{
while (l<q[i].l) modify(size[l],-),ans-=sum(size[l]-),l++;
while (l>q[i].l) l--,modify(size[l],),ans+=sum(size[l]-);
while (r>q[i].r) modify(size[r],-),ans-=r-l-sum(size[r]),r--;
while (r<q[i].r) r++,modify(size[r],),ans+=r-l+-sum(size[r]);
q[i].ans=ans;
}
sort(q+,q+m+,cmpid);
for (int i=;i<=m;i++) printf("%d\n",q[i].ans);
} int main()
{
init();
query();
return ;
}
【序列莫队+树状数组】BZOJ3289-Mato的文件管理的更多相关文章
- BZOJ_3289_Mato的文件管理_莫队+树状数组
BZOJ_3289_Mato的文件管理_莫队+树状数组 Description Mato同学从各路神犇以各种方式(你们懂的)收集了许多资料,这些资料一共有n份,每份有一个大小和一个编号 .为了防止他人 ...
- bzoj 3289: Mato的文件管理 莫队+树状数组
3289: Mato的文件管理 Time Limit: 40 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Mato同学 ...
- bzoj3236 作业 莫队+树状数组
莫队+树状数组 #include<cstdio> #include<cstring> #include<iostream> #include<algorith ...
- BZOJ3236[Ahoi2013]作业——莫队+树状数组/莫队+分块
题目描述 输入 输出 样例输入 3 4 1 2 2 1 2 1 3 1 2 1 1 1 3 1 3 2 3 2 3 样例输出 2 2 1 1 3 2 2 1 提示 N=100000,M=1000000 ...
- COGS.1822.[AHOI2013]作业(莫队 树状数组/分块)
题目链接: COGS.BZOJ3236 Upd: 树状数组实现的是单点加 区间求和,采用值域分块可以\(O(1)\)修改\(O(sqrt(n))\)查询.同BZOJ3809. 莫队为\(O(n^{1. ...
- 51nod 1290 Counting Diff Pairs | 莫队 树状数组
51nod 1290 Counting Diff Pairs | 莫队 树状数组 题面 一个长度为N的正整数数组A,给出一个数K以及Q个查询,每个查询包含2个数l和r,对于每个查询输出从A[i]到A[ ...
- 【BZOJ3460】Jc的宿舍(树上莫队+树状数组)
点此看题面 大致题意: 一棵树,每个节点有一个人,他打水需要\(T_i\)的时间,每次询问两点之间所有人去打水的最小等待时间. 伪·强制在线 这题看似强制在线,但实际上,\(pre\ mod\ 2\) ...
- HihoCoder 1488 : 排队接水(莫队+树状数组)
描述 有n个小朋友需要接水,其中第i个小朋友接水需要ai分钟. 由于水龙头有限,小Hi需要知道如果为第l个到第r个小朋友分配一个水龙头,如何安排他们的接水顺序才能使得他们等待加接水的时间总和最小. 小 ...
- BZOJ 3236 莫队+树状数组
思路: 莫队+树状数组 (据说此题卡常数) yzy写了一天(偷笑) 复杂度有点儿爆炸 O(msqrt(n)logn) //By SiriusRen #include <cmath> #in ...
随机推荐
- vue数组操作不触发前端重新渲染
暂时使用给数组先赋值 [ ] ,然后重新赋值的方式解决. 此外,能够监听的数组变异方法 https://cn.vuejs.org/v2/guide/list.html#%E5%8F%98%E5%BC% ...
- poj 2253 Frogger (dijkstra最短路)
题目链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS Memory Limit: 65536K Total Submissi ...
- 【Python学习】程序运行完发送邮件提醒
有时候我们运行一个需要跑很长时间的程序,不管是在云主机还是本地主机上运行,我们都不可能一直守在电脑面前等.所以想到使用邮件来通知提醒. 示例代码如下 # -*- coding: utf-8 -*- # ...
- 【Python问题解决】关于解决python3.x无法使用PIL库的解决方法
因为PIL库目前只更新到python2.x,故python3.x直接安装PIL库会找不到版本.但是python3.x有一个新的库,可以提供和PIL差不多的功能,也就是pillow库. 本人使用的是py ...
- Opencv模块功能介绍
本文为原创作品,转载请注明出处 欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing/ 站在巨 ...
- python基础===修改属性的值
可以以三种不同的方式修改属性的值:直接通过实例进行修改:通过方法进行设置:通过方法进行递增(增加特定的值).下面依次介绍这些方法. class Car(): def __init__(self, ma ...
- 64_g5
golang-github-kr-text-devel-0-0.11.git6807e77.f..> 11-Feb-2017 07:48 14250 golang-github-kr-text- ...
- GOLANG编译安装
GO这个编译器搞的比较混乱,GO本身是汇编+C开发出来的,后来因为觉得自己牛逼,然后用GO语言又写了一次编译器,所以中途抛弃了C,不过这种做法好与不好很难说,go真的这么有自信用自己语言写自己的编译器 ...
- [New learn]GCD的卡死现象分析研究
https://github.com/xufeng79x/GCDDemo 1.简介 前接[New learn]GCD的基本使用,我们分析了GCD的一般使用方法,其中比较特殊的是在分析到主队列的时候发生 ...
- Flash中的注册点和中心点
用一句话概括注册点和中心点的作用,那就是:注册点用来定位,中心点用来变形 当然,这句话不是非常准确,只是暂时先这么理解,下面会详细讲解. 认识注册点 每个元件都有一个注册点.在元件编辑窗口.或在舞台中 ...