bzoj 2038 莫队入门
http://www.lydsy.com/JudgeOnline/problem.php?id=2038
题意:多次询问区间内取出两个相同颜色的种类数
思路:由于不是在线更新,那么可以进行离线查询,而且当知道了[l,r]的答案,且能在O(1)的条件下得知[l-1,r],[l+1,r],[l,r+1],[l,r-1]的答案,那么就能使用莫队算法了。 大致上,将区间分块,由于n=a+b>=a*b,显然将区间开平方根是最优的,我们先将询问保存,按照块序第一优先,再考虑右端点进行排序。再来,使用cnt[]来记录当前颜色出现的次数,当得到[l,r]后,再考虑加入[l-1,r] ,[l,r+1],对答案\(ans-=cnt[col[l-1]]^2,ans+=(cnt[[col[l-1]]+1)^2 \)如果是缩小区间,那么反之。
/** @Date : 2016-12-07-21.28
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version :
*/ #include<bits/stdc++.h>
#define LL long long
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; LL col[N];
int blc[N];
int cnt[N];
struct yuu
{
LL l, r;
int id;
LL a, b;
}q[N]; int cmp(yuu a, yuu b)
{
if(blc[a.l] == blc[b.l])
return a.r < b.r;
return a.l < b.l;
} int cmpi(yuu a, yuu b)
{
return a.id < b.id;
} int main()
{
int n, m;
scanf("%d%d", &n, &m);
//{
MMF(cnt);
for(int i = 1; i <= n; i++)
scanf("%lld", col + i);
int ct = sqrt(n);
for(int i = 1; i <= n; i++)//分块
blc[i] = (i - 1)/ct + 1; for(int i = 1; i <= m; i++)
{
scanf("%lld%lld", &q[i].l, &q[i].r);
q[i].id = i;
}
sort(q + 1, q + 1 + m, cmp);
LL ans = 0;
LL ll = 1, rr = 0;
for(int i = 1; i <= m; i++)
{
//cout << q[i].l << q[i].r << endl;
if(ll > q[i].l)
for(int j = ll; j > q[i].l; j--)
ans += (2*cnt[col[j - 1]] + 1), cnt[col[j - 1]]++;
if(ll < q[i].l)
for(int j = ll; j < q[i].l; j++)
ans -= (2*cnt[col[j]] - 1), cnt[col[j]]--;
if(rr < q[i].r)
for(int j = rr; j < q[i].r; j++)
ans += (2*cnt[col[j + 1]] + 1), cnt[col[j + 1]]++;
if(rr > q[i].r)
for(int j = rr; j > q[i].r; j--)
ans -= (2*cnt[col[j]] - 1), cnt[col[j]]--;
ll = q[i].l;
rr = q[i].r;
if(q[i].l == q[i].r)
{
q[i].a = 0;
q[i].b = 1;
continue;
}
q[i].b = (q[i].r - q[i].l) * (q[i].r - q[i].l + 1);
q[i].a = ans - (q[i].r - q[i].l + 1);
LL g = __gcd(q[i].b, q[i].a);
//cout << ans <<endl;
q[i].a /= g;
q[i].b /= g;
}
sort(q + 1, q + 1 + m, cmpi);
for(int i = 1; i <= m; i++)
printf("%lld/%lld\n", q[i].a, q[i].b);
//}
return 0;
}
bzoj 2038 莫队入门的更多相关文章
- bzoj 2038 莫队算法
莫队算法,具体的可以看10年莫涛的论文. 大题思路就是假设对于区间l,r我们有了一个答案,那么对于区间l,r+1,我们 可以暴力的转移一个答案,那么对于区间l1,r1和区间l2,r2,需要暴力处理 的 ...
- BZOJ 2308 莫队入门经典
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2038 参考博客 https://www.cnblogs.com/Paul-Guderi ...
- [2009国家集训队]小Z的袜子(hose)(BZOJ2038+莫队入门题)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2038 题目: 题意:中文题意,大家都懂. 思路:莫队入门题.不过由于要去概率,所以我们假 ...
- P2709 小B的询问(莫队入门)
题目链接:https://www.luogu.org/problemnew/show/P2709 题目大意:中文题目 具体思路:莫队入门题,按照离线的方式打的,对每一个区间进行分块和编号,如果在同一个 ...
- (原创)BZOJ 2038 小Z的袜子(hose) 莫队入门题+分块
I - 小Z的袜子(hose) 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小Z ...
- BZOJ 3339 & 莫队+"所谓的暴力"
题意: 给一段数字序列,求一段区间内未出现的最小自然数. SOL: 框架显然用莫队.因为它兹瓷离线. 然而在统计上我打了线段树...用&维护的结点...400w的线段树...然后二分查找... ...
- bzoj 3289 莫队 逆序对
莫队维护逆序对,区间左右增减要分类讨论. 记得离散化. /************************************************************** Problem: ...
- bzoj 3809 莫队
收获: 1.分块时顺便记录每个位置所属的块,然后一次排序就OK了. 2.要权衡在“区间移动”与“查询结果”之间的时间,莫队算法一般区间移动频率远大于查询结果,所以我们选择的辅助数据结构时就要注意了,我 ...
- bzoj 3339 莫队
题意: 求任意一个区间的SG函数. 想到线段树,但是线段树合并很麻烦. 线段树——分块. 分块的一个应用就是莫队算法. 怎么暴力递推呢? 从一个区间到另一个区间,Ans 取决于 Ans 和 加入和删除 ...
随机推荐
- 《C++常见问题及解答》
一.类 1. 常数据成员的初始化只能在构造函数的初始化列表中进行 2. 静态数据成员不可以在类内初始化 3. 创建一个对象时的构造函数的调用次序:对象成员的构造函数.对象自身的构造函数 4. 创建一个 ...
- iOS- 如何从Boujour里解析出IP地址(sockaddr *的解析)?
1.前言 之前有网友跟我留言说到: 如何从Boujour 解析完的数组里解析出ip地址? 因为Boujour本身解析完毕之后的addresses是一个数组 那我们如何从这个数组里解析出我们需要的IP地 ...
- HDU 1995 R-汉诺塔V
https://vjudge.net/contest/67836#problem/R 用1,2,...,n表示n个盘子,称为1号盘,2号盘,....号数大盘子就大.经典的汉诺塔问 题经常作为一个递归的 ...
- 【SQLAlchemy】SQLAlchemy修改查询字段列名
SQLAlchemy问题记录 company price quantity Microsoft Google Google Google 要实现脚本 select price, sum(quantit ...
- BZOJ4810 Ynoi2017由乃的玉米田(莫队+bitset)
多组询问不强制在线,那么考虑莫队.bitset维护当前区间出现了哪些数,数组记录每个数的出现次数以维护bitset.对于乘法,显然应有一个根号范围内的因子,暴力枚举即可.对于减法,a[i]-a[j]= ...
- apt-key 命令
学习参照网上教程在容器中搭建nginx时看到apt-key命令不解,记录一下.一下是 --help中的解释. apt-key命令解释: apt-key add <file> - add t ...
- [USACO06NOV]玉米田Corn Fields 状压DP
题面: 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地.John打算在牧场上的某几格里种上美味的草,供他的 ...
- BZOJ2924 [Poi1998]Flat broken lines 【Dilworth定理 + 树状数组】
题目链接 BZOJ2924 题解 题面有误..是\(45°\) 如果两个点间连线与\(x\)轴夹角在\(45°\)以内,那么它们之间连边 求最小路径覆盖 = 最长反链 由于\(45°\)比较难搞,我们 ...
- Vue报错
Node Sass could not find a binding for your current environment: OS X 64-bit with Node.js 8.x Found ...
- 总结:Bias(偏差),Error(误差),Variance(方差)及CV(交叉验证)
犀利的开头 在机器学习中,我们用训练数据集去训练(学习)一个model(模型),通常的做法是定义一个Loss function(误差函数),通过将这个Loss(或者叫error)的最小化过程,来提高模 ...