传送门

题意

小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏。

操场是个凸 $ n $ 边形,$ n $ 个顶点 $ P_i $ 按照逆时针从 $ 0 $ 至 $ n-1 $ 编号。

现在小凸随机站在操场中的某个位置,标记为 $ P $ 点。将 $ P $ 点与 $ n $ 个顶点各连一条边,形成 $ n $ 个三角形。如果这时 $ (P, P_0, P_1) $ 形成的三角形的面积是 $ n $ 个三角形中最小的一个,小凸则认为这是一次正确站位。

现在小凸想知道他一次站位正确的概率是多少。

题解

对于一次正确站位 $ P $ 来说,要满足两个条件:

  1. $ area(P, P_0. P_1) < area(P, P_i, P_{i+1}) \quad (1 \leq i \lt n-1) $,其中 $ area $ 表示三角形面积。
  2. $ P $ 在多边形内部。

对于条件1来说,将面积转化成叉积形式:

\[\overrightarrow{PP_0} \times \overrightarrow{PP_1} < \overrightarrow{PP_i} \times \overrightarrow{PP_{i+1}} \quad (1 \leq i \lt n-1)
\]

然后再将向量拆开,整理得:

\[(-y_1+y_0+y_{i+1}-y_i)x + (-x_0+x_1+x_i-x_{i+1})y + (x_0y_1-x_1y_0-x_iy_{i+1}+x_{i+1}y_i) < 0
\]

这样就得到了 $ n $ 个以一般式 $ Ax+By+C<0 $ 的形式表示的半平面。

另外对于条件2来说,也是 $ n-1 $ 个半平面。

所以总共就有了 $ 2n-1 $ 个半平面,跑一边半平面交,就求出了正确站位的总面积 $ S_{right} $ 。

设凸多边形的面积为 $ S $ ,则答案就是 $ \dfrac{S_{right}}{S} $ 。

AC Code

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#define MAX_N 200005
#define EPS 1e-10
#define eq(x,y) (fabs((x)-(y))<EPS) using namespace std; struct Coor
{
double x,y;
Coor(double _x,double _y) { x=_x,y=_y; }
Coor(){}
friend Coor operator + (const Coor &a,const Coor &b)
{
return Coor(a.x+b.x,a.y+b.y);
}
friend Coor operator - (const Coor &a,const Coor &b)
{
return Coor(a.x-b.x,a.y-b.y);
}
friend Coor operator * (const Coor &a,double b)
{
return Coor(a.x*b,a.y*b);
}
friend Coor operator / (const Coor &a,double b)
{
return Coor(a.x/b,a.y/b);
}
friend double len(Coor a,Coor b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
friend double dot(Coor a,Coor b)
{
return a.x*b.x+a.y*b.y;
}
friend double cross(Coor a,Coor b)
{
return a.x*b.y-a.y*b.x;
}
friend double area(Coor a,Coor b,Coor c)
{
return fabs(cross(b-a,c-a))/2.0;
}
}; struct Line
{
Coor a,b;
double s;
Line(Coor _a,Coor _b)
{
a=_a,b=_b;
s=atan2(b.y-a.y,b.x-a.x);
}
Line(){}
friend bool operator < (const Line &l1,const Line &l2)
{
return l1.s!=l2.s ? l1.s<l2.s : cross(l1.b-l1.a,l2.b-l1.a)<0;
}
friend Coor inter(Line l1,Line l2)
{
Coor x=l1.b-l1.a,y=l2.b-l2.a,u=l1.a-l2.a;
Coor ans=l1.a+x*(cross(y,u)/cross(x,y));
return ans;
}
friend bool onlef(Coor p,Line l)
{
return cross(l.b-l.a,p-l.b)>0;
}
}; int n,tot=0,cnt=0;
double sum=0,ans=0;
Coor p[MAX_N];
Coor a[MAX_N];
Line l[MAX_N];
Line q[MAX_N]; void read()
{
scanf("%d",&n);
for(int i=0;i<n;i++) scanf("%lf%lf",&p[i].x,&p[i].y);
p[n]=p[0];
for(int i=1;i<n-1;i++) sum+=area(p[0],p[i],p[i+1]);
} void build()
{
for(int i=1;i<n;i++)
{
double a=-p[1].y+p[0].y+p[i+1].y-p[i].y;
double b=-p[0].x+p[1].x+p[i].x-p[i+1].x;
double c=p[0].x*p[1].y-p[1].x*p[0].y-p[i].x*p[i+1].y+p[i+1].x*p[i].y;
Coor u=(eq(b,0) ? Coor(-c/a,0) : Coor(0,-c/b)),v(-b,a);
l[++tot]=Line(u,u+v);
}
for(int i=0;i<n;i++) l[++tot]=Line(p[i],p[i+1]);
} void hpi()
{
sort(l+1,l+1+tot);
int L=1,R=0,now=0;
for(int i=1;i<=tot;i++) if(i==1 || l[i].s!=l[now].s) l[++now]=l[i];
tot=now,q[++R]=l[1],q[++R]=l[2];
for(int i=3;i<=tot;i++)
{
while(L<R && !onlef(inter(q[R],q[R-1]),l[i])) R--;
while(L<R && !onlef(inter(q[L],q[L+1]),l[i])) L++;
q[++R]=l[i];
}
while(L<R && !onlef(inter(q[R],q[R-1]),q[L])) R--;
while(L<R && !onlef(inter(q[L],q[L+1]),q[R])) L++;
q[R+1]=q[L];
for(int i=L;i<=R;i++) a[++cnt]=inter(q[i],q[i+1]);
for(int i=2;i<cnt;i++) ans+=area(a[1],a[i],a[i+1]);
} void work()
{
build();
hpi();
printf("%.4f\n",ans/sum);
} int main()
{
read();
work();
}

BZOJ 4445 [Scoi2015]小凸想跑步:半平面交的更多相关文章

  1. 4445: [Scoi2015]小凸想跑步 半平面交

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=4445 题解: 设点坐标,利用叉积可以解出当p坐标为\((x_p,y_p)\)时,与边i- ...

  2. 【BZOJ4445】[Scoi2015]小凸想跑步 半平面交

    [BZOJ4445][Scoi2015]小凸想跑步 Description 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸n边形,N个顶点按照逆时针从0-n-l编号.现 ...

  3. bzoj 4445 小凸想跑步 - 半平面交

    题目传送门 vjudge的快速通道 bzoj的快速通道 题目大意 问在一个凸多边形内找一个点,连接这个点和所有顶点,使得与0号顶点,1号顶点构成的三角形是最小的概率. 假设点的位置是$(x, y)$, ...

  4. bzoj 4445 [SCOI2015] 小凸想跑步

    题目大意:一个凸包,随机一个点使得其与前两个点组成的面积比与其他相邻两个点组成的面积小的概率 根据题意列方程,最后求n条直线的交的面积与原凸包面积的比值 #include<bits/stdc++ ...

  5. 【BZOJ4445】[SCOI2015]小凸想跑步(半平面交)

    [BZOJ4445][SCOI2015]小凸想跑步(半平面交) 题面 BZOJ 洛谷 题解 首先把点给设出来,\(A(x_a,y_a),B(x_b,y_b),C(x_c,y_c),D(x_d,y_d) ...

  6. [SCOI2015]小凸想跑步

    题目描述 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸 n 边形, nn 个顶点按照逆时针从 0 ∼n−1 编号.现在小凸随机站在操场中的某个位置,标记为p点.将 p ...

  7. BZOJ4445: [Scoi2015]小凸想跑步

    裸半平面交. 记得把P0P1表示的半平面加进去,否则点可能在多边形外. #include<bits/stdc++.h> #define N 100009 using namespace s ...

  8. [bzoj4445] [SCOI2015]小凸想跑步 (半平面交)

    题意:凸包上一个点\(p\),使得\(p\)和点\(0,1\)组成的三角形面积最小 用叉积来求: \(p,i,i+1\)组成的三角形面积为: (\(\times\)为叉积) \((p_p-i)\tim ...

  9. 【LuoguP4081】[SCOI2015]小凸想跑步

    题目链接 题意 给你一个凸多边形,求出在其内部选择一个点,这个点与最开始输入的两个点形成的三角形是以该点对凸多边形三角剖分的三角形中面积最小的一个三角形的概率. Sol 答案就是 可行域面积与该凸多边 ...

随机推荐

  1. info 手册

      info flex 可以查看flex帮助. h就可以看到相关命令,常用命令已经加粗: x           关闭此帮助窗口. q           一并退出 Info. RET         ...

  2. windows python easy_install ,pip. selenium

    http://www.cnblogs.com/fnng/p/3157639.html 搭建平台windows 准备工具如下: unknown encoding: cp65001异常 python安装后 ...

  3. 全面解析JavaScript中“&&”和“||”操作符(总结篇)

    1.||(逻辑或), 从字面上来说,只有前后都是false的时候才返回false,否则返回true. ? 1 2 3 4 alert(true||false); // true alert(false ...

  4. java基础10 吃货联盟点餐系统

    public class OrderMsg { public static void main(String[] args) throws Exception { /** * 订餐人姓名.选择菜品.送 ...

  5. 服务器(Ubuntu)远程访问ipython notebook(服务器运行ipython notebook 本地浏览器访问)

    准备工作 首先要安装 ipython 推荐直接 Anaconda 搞起(装在服务器). Anaconda 帮你集成N多python相关环境(包),省得你再手动咔咔一顿安装 服务器启动ipython n ...

  6. N多条短信,用什么算法从中找出相似内容的来?

    创建树,每个字符为一个节点,对于同一位置字符相同的共用一个节点.最后找出具有公共节点的短信.例如:MessageA "hello,world"MessageB "hell ...

  7. Python-selenium 下拉框定位

    1.通过select 进行定位下拉框 首先selenium 很人性化的给提供了一个Select的模块,供处理下来菜单,首先我们需要导入Select,通过from selenium.webdriver. ...

  8. (4.1)SQL Server Browser 与动态端口

    转自:http://blog.51cto.com/jimshu/1120295 一.启用TCP端口 1.启用TCP/IP协议 打开SSCM(SQL Server Configuration Manag ...

  9. (转)VLC播放RTP打包发送的.264文件

    VLC播放RTP打包发送的.264文件 1,要有一个发送RTP包的264文件的服务器; 具体代码如下: rtp.h #include <WinSock2.h> #pragma commen ...

  10. java实现简单邮件的发送以及常见问题

    java实现简单邮件的发送以及常见问题 最近遇到个需求需要实现发送邮件的功能,以前做发送邮件功能都是有邮箱用户名密码,通过用户名密码连接对应的SMTP服务器来实现邮件的发送.但是这次用公司内部的邮箱, ...