问题一:划分数

问题描述

有n个去区别的物体,将它们划分成不超过m组,求出划分方法数模M的余数。

我们定义dp[i][j],表示j的i划分的总数

将j划分成i个的话,可以先取出k个,然后将剩下的j-k个分成i-1份。

考虑n的m划分Ai,如果对于每一个i都有Ai>0,那么Ai-1就对应了n-md的m划分。另外如果存在Ai=0,那么就对应了n的m-1划分,则可以得到递推公式:

a[i][j]=a[i][j-i]+a[i-1][j];

#include<iostream>
#include<stdio.h>
#define MAX_M 100
#define MAX_N 100
using namespace std;
int n,m,M;
int dp[MAX_M+1][MAX_N+1];///dp[i][j]表示j的i划分的总数
void solve()
{
dp[0][0]=1;
for(int i=1; i<=m; i++)
{
for(int j=0; j<=n; j++)
{
if(j-i>=0)
dp[i][j]=(dp[i-1][j]+dp[i][j-i])%M;
else
dp[i][j]=dp[i-1][j];
}
}
printf("%d\n",dp[m][n]);
}
int main()
{
scanf("%d%d%d",&n,&m,&M);
solve();
return 0;
}

问题二:多重集组合数

问题描述:

有n种物品,第i种物品有Ai个。不同种类的物品可以互相区分,但相同种类的无法区分。从这些物品中取出m个的话,有多少种取法?求出方案数模M的余数。

分析:

为了不重复计数,同一种类的物品最好一次性处理好。

定义dp[i+1][j],表示从前i种物品中取出j个的组合总数

从前i种物品中取出j个,可以从前i-1种产品中取出j-k个,再从第i种产品中取出k个

#include<iostream>
#include<stdio.h>
#define MAX_M 100
#define MAX_N 100
using namespace std;
int n,m,M;
int a[MAX_N];
int dp[MAX_M+1][MAX_N+1];
void solve()
{
///不管从多少种物品中取,取0个的方法有且仅有1种
for(int i=0; i<=n; i++)
dp[i][0]=1;
for(int i=0; i<n; i++)
for(int j=1; j<=m; j++)
{
if(j-1-a[i]>=0)///加个M避免减法过后产生负数
dp[i+1][j]=(dp[i+1][j-1]+dp[i][j]-dp[i][j-1-a[i]]+M)%M;
else
dp[i+1][j]=(dp[i+1][j-1]+dp[i][j])%M;
}
printf("%d\n",dp[n][m]);
}
int main()
{
scanf("%d%d%d",&n,&m,&M);
for(int i=0; i<n; i++)
scanf("%d",&a[i]);
solve();
return 0;
}

有关计数问题的dp的更多相关文章

  1. 有关计数问题的DP 划分数

    有n个无差别的物品,将它们划分成不超过m组.求出划分方法数模M的余数. 输入: 3 4 10000 输出: 4(1+1+2=1+3=2+2=4) 定义:dp[i][j] = j的i划分的总数 #inc ...

  2. POJ 3046 Ant Counting ( 多重集组合数 && 经典DP )

    题意 : 有 n 种蚂蚁,第 i 种蚂蚁有ai个,一共有 A 个蚂蚁.不同类别的蚂蚁可以相互区分,但同种类别的蚂蚁不能相互区别.从这些蚂蚁中分别取出S,S+1...B个,一共有多少种取法. 分析 :  ...

  3. [2019杭电多校第一场][hdu6578]Blank(dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6578 计数问题想到dp不过分吧... dp[i][j][k][w]为第1-i位置中4个数最后一次出现的 ...

  4. 洛谷 P7620 - CF1431J Zero-XOR Array(状压 dp)

    洛谷题面传送门 首先显然题目等价于求有多少个长度 \(n-1\) 的序列 \(b\) 满足 \(a_i\le b_i\le a_{i+1}\),满足 \(b_1\oplus b_2\oplus\cdo ...

  5. 【tyvj P4879】骰子游戏

    http://www.tyvj.cn/p/4879 首先,投一个骰子,每个数字出现的概率都是一样的.也就是不算小A的话,n个人投出x个骰子需要的次数和点数无关. 计数问题考虑dp,令f(i,j)为前i ...

  6. Contest1593 - 2018-2019赛季多校联合新生训练赛第三场(部分题解)

    H 10255 自然数无序拆分 H 传送门 题干: 题目描述 美羊羊给喜羊羊和沸羊羊出了一道难题,说谁能先做出来,我就奖励给他我自己做的一样礼物.沸羊羊这下可乐了,于是马上答应立刻做出来,喜羊羊见状, ...

  7. NOIWC前的交流题目汇总

    RT 2018.12.27 i207M:BZOJ 4695 最假女选手 以维护最大值为例,记录最大值和严格次大值和最大值的出现次数,然后取min的时候递归到小于最大值但大于次大值修改,这个就是最重要的 ...

  8. HDU 4832(DP+计数问题)

    HDU 4832 Chess 思路:把行列的情况分别dp求出来,然后枚举行用几行,竖用几行.然后相乘累加起来就是答案 代码: #include <stdio.h> #include < ...

  9. [计数问题dp]子数列的个数

    http://www.51nod.com/tutorial/course.html#!courseId=15 解题关键:主要是一种思想 $dp[i] = dp[i - 1]*2$ 如果a[i]不在之前 ...

随机推荐

  1. css那些事儿4 背景图像

    background:背景颜色,图像,平铺方式,大小,位置 能够显示背景区域即为盒子模型的填充和内容部分,其中背景图像将会覆盖背景颜色.常见的水平或垂直渐变颜色背景通常使用水平或垂直渐变的背景图像在水 ...

  2. WinForm连续点击按钮只打开一次窗体

    许多朋友,学习C#时,制作WinForm小程序总会有一个问题,如果我们在父窗体设置的是点击一个按钮,打开一个子窗体,连续点击总会连续出现一样窗体,可是我们有时只想打开一次窗体,怎么办? 呵呵,我来方法 ...

  3. android eclipse 添加libs文件夹

    导入一个项目发现没有libs文件夹,后来z自己新建了个lib文件夹,但是总是不行,后来发现错了,应该是libs文件夹.建完了之后,系统会自动在build path中把这个文件夹添加进来的:个人无须操作

  4. bootstrap 有些控件需要调用锚点,会与angular 路由 冲突

    最简单的方法 就是 在 #号前加/, 但有人说 在服务器上回失效,也不知道是什么原理.慎用 最靠谱的方法 就 是 使用bootstrap中的js控制控件, 比如轮播图的上一页 下一页,就可以在 ang ...

  5. 安装FastDFS+Nginx

    安装FastDFS FastDFS开发者的GitHub地址为:https://github.com/happyfish100 打开上述链接,我们点击fastdfs–>release,发现最新版的 ...

  6. context.getResourceAsStream获取的是部署在服务器上面的文件位置 而不是我们本地的工程位置 意思是说获取的都是web下面的文件位置

    context.getResourceAsStream获取的是部署在服务器上面的文件位置 而不是我们本地的工程位置 意思是说获取的都是web下面的文件位置

  7. bzoj3546[ONTAK2010]Life of the Party

    题意是裸的二分图关键点(必然在二分图最大匹配中出现的点).比较经典的做法在cyb15年的论文里有: 前几天写jzoj5007的时候脑补了一种基于最小割可行边的做法:考虑用最大流求解二分图匹配.如果某个 ...

  8. 【bzoj1616】[Usaco2008 Mar]Cow Travelling游荡的奶牛 bfs

    题目描述 奶牛们在被划分成N行M列(2 <= N <= 100; 2 <= M <= 100)的草地上游走,试图找到整块草地中最美味的牧草.Farmer John在某个时刻看见 ...

  9. 【bzoj2938】[Poi2000]病毒 AC自动机

    题目描述 二进制病毒审查委员会最近发现了如下的规律:某些确定的二进制串是病毒的代码.如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的.现在委员会已经找出了所有的病毒代码段,试问,是否 ...

  10. Python type()函数用途及使用方法

    函数可以做什么 在介绍数据类型的文章中提到过,要怎么样查看对像的数据类型.type()就是一个最实用又简单的查看数据类型的方法.type()是一个内建的函数,调用它就能够得到一个反回值,从而知道想要查 ...