【题解】Atcoder ARC#97 F-Monochrome Cat
好zz啊我……(;д;)
首先我们可以删掉所有只有黑色节点的子树(一定不会遍历到), 且注意到每一个点你一定只会经过一遍。然后又考虑如果起点和终点相同,那么总次数实际上已经固定了:就是遍历整棵树(每一条边都需要经过两次),以及各点需要的改变颜色的额外花费。这个是可以愉快地 \(O(n)\) 统计的。再想起点和终点不相同的情况呢?其实就是可以让一个节点到一个叶子节点所经过的次数减少一次。一个本来需要额外花费的点,现在少经过了一次,既少走了一条路,又少改了一次颜色;而本来不需要的点, 少走的路和改变颜色的花费抵消。我们给他们赋予权值表示可以节省的时间,这让我们的问题转化为:如何找到一条权值最大的链,且链的端点中有一个是叶子结点?
我们dp一下,因为一条路径一定由一条经过了叶子节点的路径和一条不一定经过了叶子结点的路径组成,这样找出最大的就可以了。
#include <bits/stdc++.h>
using namespace std;
#define maxn 100005
#define INF 99999999
int n, root, Ans, ans, C[maxn], mark[maxn];
int degree[maxn], dp1[maxn], dp2[maxn];
int val[maxn]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} struct edge
{
int cnp, to[maxn * ], last[maxn * ], head[maxn];
edge() { cnp = ; }
void add(int u, int v)
{
to[cnp] = v, last[cnp] = head[u], head[u] = cnp ++;
to[cnp] = u, last[cnp] = head[v], head[v] = cnp ++;
}
}E1; void dfs(int u, int fa)
{
mark[u] = C[u];
for(int i = E1.head[u]; i; i = E1.last[i])
{
int v = E1.to[i];
if(v == fa) continue;
dfs(v, u);
if(!mark[v]) ++ degree[u], ++ degree[v];
mark[u] &= mark[v];
}
} void dfs2(int u, int fa)
{
int mx1 = , mx2 = ; bool flag = ;
Ans += degree[u];
if((degree[u] + C[u]) & ) val[u] = ;
else val[u] = , ++ Ans;
for(int i = E1.head[u]; i; i = E1.last[i])
{
int v = E1.to[i];
if(v == fa || mark[v]) continue;
flag = ; dfs2(v, u);
ans = max(ans, max(dp1[v] + mx2 + val[u], dp2[v] + mx1 + val[u]));
mx1 = max(dp1[v], mx1), mx2 = max(dp2[v], mx2);
}
dp1[u] = mx1 + val[u], dp2[u] = flag ? mx2 + val[u] : -INF;
} int main()
{
n = read();
for(int i = ; i < n; i ++)
{
int x = read(), y = read();
E1.add(x, y);
}
for(int i = ; i <= n; i ++)
{
char c; cin >> c;
if(c == 'B') C[i] = ;
else root = i;
}
if(!root) { puts(""); return ; }
dfs(root, ); dfs2(root, );
printf("%d\n", Ans - ans);
return ;
}
【题解】Atcoder ARC#97 F-Monochrome Cat的更多相关文章
- 【题解】 AtCoder ARC 076 F - Exhausted? (霍尔定理+线段树)
题面 题目大意: 给你\(m\)张椅子,排成一行,告诉你\(n\)个人,每个人可以坐的座位为\([1,l]\bigcup[r,m]\),为了让所有人坐下,问至少还要加多少张椅子. Solution: ...
- [题解] Atcoder ARC 142 D Deterministic Placing 结论,DP
题目 (可能有点长,但是请耐心看完,个人认为比官方题解好懂:P) 首先需要注意,对于任意节点i上的一个棋子,如果在一种走法中它走到了节点j,另一种走法中它走到了节点k,那么这两种走法进行完后,棋子占据 ...
- [题解] Atcoder ARC 142 E Pairing Wizards 最小割
题目 建图很妙,不会. 考虑每一对要求合法的巫师(x,y),他们两个的\(a\)必须都大于\(min(b_x,b_y)\).所以在输入的时候,如果\(a_x\)或者\(a_y\)小于\(min(b_x ...
- [题解] Atcoder AGC 005 F Many Easy Problems NTT,组合数学
题目 观察当k固定时答案是什么.先假设每个节点对答案的贡献都是\(\binom{n}{k}\),然后再减掉某个点没有贡献的选点方案数.对于一个节点i,它没有贡献的方案数显然就是所有k个节点都选在i连出 ...
- [atcoder contest 010] F - Tree Game
[atcoder contest 010] F - Tree Game Time limit : 2sec / Memory limit : 256MB Score : 1600 points Pro ...
- [题解] Atcoder Regular Contest ARC 147 A B C D E 题解
点我看题 A - Max Mod Min 非常诈骗.一开始以为要观察什么神奇的性质,后来发现直接模拟就行了.可以证明总操作次数是\(O(nlog a_i)\)的.具体就是,每次操作都会有一个数a被b取 ...
- 【题解】Atcoder ARC#90 F-Number of Digits
Atcoder刷不动的每日一题... 首先注意到一个事实:随着 \(l, r\) 的增大,\(f(r) - f(l)\) 会越来越小.考虑暴力处理出小数据的情况,我们可以发现对于左端点 \(f(l) ...
- 【题解】Atcoder ARC#94 F-Normalization
再次膜拜此强题!神级性质之不可能发现系列收藏++:首先,对于长度<=3的情况,我们采取爆搜答案(代码当中是打表).对于长度>=4的情况,则有如下几条玄妙的性质: 首先我们将 a, b, c ...
- 【Atcoder】ARC 080 F - Prime Flip
[算法]数论,二分图最大匹配 [题意]有无限张牌,给定n张面朝上的牌的坐标(N<=100),其它牌面朝下,每次操作可以选定一个>=3的素数p,并翻转连续p张牌,求最少操作次数使所有牌向下. ...
随机推荐
- 单目、双目和RGB-D视觉SLAM初始化比较
无论单目.双目还是RGB-D,首先是将从摄像头或者数据集中读入的图像封装成Frame类型对象: 首先都需要将彩色图像处理成灰度图像,继而将图片封装成帧. (1) 单目 mCurrentFrame = ...
- MySQL高级-MySQL安装
1.mysql安装 检查系统是否安装过mysql 查询命令:rpm -qa|grep -i mysql 删除命令:rpm -e RPM软件包名(该名字是上一个命令查出来的名字) 安装命令:rpm -i ...
- 征战 OSG-序及目录
其实很早就应该写这个了,一直拖到现在就是因为懒啊. 自从七月演习回来,被划到三维平台开发部,就一直混日子,也没人带领,也没人问结果,就这么一直堕落下来了,直到有一天才发现自己也看不上自己了,觉得自己这 ...
- jstat命令
jstat命令使用 jstat命令可以查看堆内存各部分的使用量,以及加载类的数量.命令的格式如下: jstat [-命令选项] [vmid] [间隔时间/毫秒] [查询次数] 注意:使用的jdk版本是 ...
- Centos7下部署activeMQ消息队列服务
#1.下载activeMQlinux包 http://activemq.apache.org/activemq-5100-release.html 下载linux的activeMQ包 #2.使用X ...
- RedHat/CentOS利用iso镜像做本地yum源
在这里用iso或者光盘做本地yum源的方法是差不多的,只是用光盘的话Linux系统会自动挂载,用iso镜像的或需要手动挂载,这里就说挂载iso的方法吧. (1) 创建iso存放目录和挂载目录 mkdi ...
- Spring学习(三)—— 自动装配案例分析
Spring_Autowiring collaborators 在Spring3.2.2中自动装配类型,分别为:no(default)(不采用自动装配).byName,byType,construct ...
- .从列表结束中删除第N个节点
描述 给定一个链表,从列表的最后删除倒数第n个元素 例如: 给定链表:1-> 2-> 3-> 4-> 5,并且n = 2. 删除倒数第二个,链表将变为1-> 2-> ...
- 3dContactPointAnnotationTool开发日志(十九)
增加了输出接触点信息到文件功能.
- Python的time,datetime,string相互转换
#把datetime转成字符串 def datetime_toString(dt): return dt.strftime("%Y-%m-%d-%H") #把字符串转成dateti ...