BZOJ 1179 Atm(强连通分量缩点+DP)
题目说可以通过一条边多次,且点权是非负的,所以如果走到图中的一个强连通分量,那么一定可以拿完这个强连通分量上的money。
所以缩点已经很明显了。缩完点之后图就是一个DAG,对于DAG可以用DP来求出到达每一个点的money最大值。具体实现我用的是bfs。
然后如果一个强连通分量内有酒馆,那么这个点就可以更新答案啦。
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... struct Edge{int p, next;}edge[N], edge1[N];
int head[N], head1[N], cnt=, cnt1=, node[N], ans=, dis[N];
int Low[N], DFN[N], Stack[N], Belong[N], Index, top, scc, num[N];
bool Instack[N], isjiu[N], jiu[N];
queue<int>Q; void add_edge(int u, int v){edge[cnt].p=v; edge[cnt].next=head[u]; head[u]=cnt++;}
void add_edge1(int u, int v){edge1[cnt1].p=v; edge1[cnt1].next=head1[u]; head1[u]=cnt1++;}
void Tarjan(int u)
{
int v;
Low[u]=DFN[u]=++Index; Stack[top++]=u; Instack[u]=true;
for (int i=head[u]; i; i=edge[i].next) {
int v=edge[i].p;
if (!DFN[v]) {
Tarjan(v);
if (Low[u]>Low[v]) Low[u]=Low[v];
}
else if (Instack[v]&&Low[u]>DFN[v]) Low[u]=DFN[v];
}
if (Low[u]==DFN[u]) {
scc++;
do{
v=Stack[--top]; Instack[v]=false; Belong[v]=scc;
num[scc]+=node[v]; jiu[scc]|=isjiu[v];
}while (v!=u);
}
}
void solve(int n){
mem(DFN,); mem(Instack,); mem(num,);
Index=scc=top=;
FOR(i,,n) if (!DFN[i]) Tarjan(i);
}
int main ()
{
int n, m, u, v, s, p;
n=Scan(); m=Scan();
while (m--) u=Scan(), v=Scan(), add_edge(u,v);
FOR(i,,n) node[i]=Scan();
s=Scan(); p=Scan();
FOR(i,,p) u=Scan(), isjiu[u]=;
solve(n);
FO(i,,n) for (u=head[i]; u; u=edge[u].next) {
v=edge[u].p;
if (Belong[v]==Belong[i]) continue;
add_edge1(Belong[i],Belong[v]);
}
Q.push(Belong[s]); dis[Belong[s]]=num[Belong[s]];
while (!Q.empty()) {
u=Q.front(); Q.pop();
if (jiu[u]) ans=max(ans,dis[u]);
for (int i=head1[u]; i; i=edge1[i].next) {
v=edge1[i].p;
if (dis[v]>=dis[u]+num[v]) continue;
dis[v]=dis[u]+num[v];
Q.push(v);
}
}
printf("%d\n",ans);
return ;
}
BZOJ 1179 Atm(强连通分量缩点+DP)的更多相关文章
- UVA11324 The Largest Clique —— 强连通分量 + 缩点 + DP
题目链接:https://vjudge.net/problem/UVA-11324 题解: 题意:给出一张有向图,求一个结点数最大的结点集,使得任意两个结点u.v,要么u能到达v, 要么v能到达u(u ...
- POJ3160 Father Christmas flymouse[强连通分量 缩点 DP]
Father Christmas flymouse Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 3241 Accep ...
- UVA11324 The Largest Clique[强连通分量 缩点 DP]
UVA - 11324 The Largest Clique 题意:求一个节点数最大的节点集,使任意两个节点至少从一个可以到另一个 同一个SCC要选一定全选 求SCC 缩点建一个新图得到一个DAG,直 ...
- BZOJ 1924 所驼门王的宝藏(强连通分量缩点+DAG最长链)
思路不是很难,因为宝藏只会在给出的n个点内有,于是只需要在这n个点里面连边,一个点如果能到达另一个点则连一条有向边, 这样用强连通分量缩点后答案就是DAG的最长链. 问题在于暴力建图是O(n^2)的, ...
- 【强连通分量缩点】【拓扑排序】【dp预处理】CDOJ1640 花自飘零水自流,一种相思,两处闲愁。
题意: 在n个点m条边的有向图上,从1出发的回路最多经过多少个不同的点 可以在一条边上逆行一次 题解: 在同一个强连通分量中,显然可以经过当中的每一个点 因此先将强连通分量缩点,点权为强连通分量的点数 ...
- BZOJ 1179 Atm 题解
BZOJ 1179 Atm 题解 SPFA Algorithm Tarjan Algorithm Description Input 第一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来 ...
- bzoj 1179 Atm
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1179 题解: 一道比较综合的图论题 直接讲正解: 如果这个图G中存在某个强连通分量,那么这 ...
- uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=sh ...
- BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP
BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP Description In an effort to better manage t ...
随机推荐
- Django中的模型继承
1.使用最原始的方式继承 class Animal(models.Model): name = models.CharField(max_length=20) age = models.Integer ...
- [Oracle]关于Oracle分页写法的性能分析及ROWNUM说明
关于分页写法的性能分析及ROWNUM的补充说明 分页写法 一.测试前数据准备 SQL> SELECT COUNT(*) FROM BPM_PROCVAR; COUNT(*) ---------- ...
- 对于微信小程序登录的理解图
有两种获取用户信息的方案. 1.不包含敏感信息openId 的json对象(包含:nickname.avatarUrl等基本信息) 2.包含敏感信息openId的基本信息. 第一种获取方案 1.首先调 ...
- JDK核心源码(2)
Java的基础知识有很多,但是我认为最基础的知识应该要属jdk的基础代码, jdk的基础代码里面,有分了很多基础模块,其中又属jdk包下面的lang包最为基础. 我们下面将总结和分析一下lang包下面 ...
- Ruby on Rails Tutorial 第2版 学习笔记
Ruby on Rails Tutorial 第2版 在线阅读:http://railstutorial-china.org/ 英文版:http://ruby.railstutorial.org/ru ...
- 创龙DSP6748开发板LED闪烁-第一篇
1. 首先看下DSP6748的GPIO寄存器的文档,先看下框图,有这个框图,一目了然,输入和输出很清楚 2. 看下寄存器部分,对应上面的图,问题在于,DSP6748有多少个GPIO?最多144个,下一 ...
- angualarjs $location服务
$location服务 angular使用内置的$location服务来监听.操作url,包括以下功能: - 获取.监听.改变地址栏的URL: - 与URL实现双向数据绑定(地址栏变动.前进后退或者点 ...
- Spring缓存穿透问题修复
本文来自网易云社区. 本剧情纯属真实,犹如雷同实乃缘分. 发生 事情的发生在某天早上,天气怎样反正是忘了,只记得当时监控平台大量的数据库错误报警. 作为后端开发,当看到日志中大量的db连接获取失败,心 ...
- 金山注入浏览器默认开启上网导航 www.uu114.cn
金山注入浏览器默认开启上网导航 www.uu114.cn 今天突然发现我的电脑所有浏览器打开后,都会默认打开一个www.uu114.cn网站,chrome.firefox和IE都中招了.经过排查,发现 ...
- git学习笔记(一)——从已存在的远程仓库克隆
应用场景:在公司电脑把脚本上传到公司的gitlab上,在家里想继续写: 问题: 家里的之前代码连的是github的仓库,需要把公钥替换成公司gitlab的. 环境:win10,pycharm,git ...