http://poj.org/problem?id=2942

所写的tarjan练习题最难的一道。

说白了难在考得不是纯tarjan。

首先我们把仇恨关系处理成非仇恨关系的图,然后找双连通分量,在双连通分量里的点满足了任意一个人可以和两个(或以上)的人坐一起。

那么我们接下来要判断奇环。

发现性质:如果一个双连通分量有奇环,那么其中任意一点一定在某个奇环上。

也就是说,这些人拼一拼绝对能全部开会成功,我们把他们打上成功标志。

然后搜失败标志的人的个数即可。

判断奇环的方法显然二分图染色。

#include<stack>
#include<cstdio>
#include<cstring>
#include<vector>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
inline int read(){
int x=,w=;char ch=;
while(ch<''||ch>''){if(ch=='-')w=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*w;
}
const int maxn=;
struct node{
int st;
int to;
int nxt;
}edge[];
int cnt,head[maxn];
void add(int u,int v){
cnt++;
edge[cnt].st=u;
edge[cnt].to=v;
edge[cnt].nxt=head[u];
head[u]=cnt;
return;
}
bool dis[maxn][maxn];
bool ok[maxn];
int color[maxn];
int dfn[maxn];
int low[maxn];
bool inslt[maxn];
int t=;
int n,m;
int numslt[maxn];
stack<int>q;
vector<int>slt[maxn];
int slt_cnt;
void tarjan(int u,int f){
t++;
dfn[u]=t;
low[u]=t;
for(int i=head[u];i;i=edge[i].nxt){
int v=edge[i].to;
if(!dfn[v]){
q.push(i);
tarjan(v,u);
low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u]){
slt_cnt++;
slt[slt_cnt].clear();
while(){
int num=q.top();
q.pop();
if(numslt[edge[num].st]!=slt_cnt){
numslt[edge[num].st]=slt_cnt;
slt[slt_cnt].push_back(edge[num].st);
}
if(numslt[edge[num].to]!=slt_cnt){
numslt[edge[num].to]=slt_cnt;
slt[slt_cnt].push_back(edge[num].to);
}
if(edge[num].to==v&&edge[num].st==u)break;
}
}
}else if(f!=v){
if(low[u]>dfn[v]){
q.push(i);
low[u]=dfn[v];
}
}
}
return;
}
bool draw(int u){
bool ret=;
for(int i=head[u];i;i=edge[i].nxt){
int v=edge[i].to;
if(!inslt[v])continue;
if(color[v]==-){
color[v]=-color[u];
ret|=draw(v);
}else if(color[v]==color[u]){
return ;
}
}
return ret;
}
void clr(){
cnt=;slt_cnt=;
while(!q.empty())q.pop();
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(numslt,,sizeof(numslt));
memset(head,,sizeof(head));
memset(dis,,sizeof(dis));
memset(ok,,sizeof(ok));
return;
}
int main(){
n=read();
m=read();
while(n||m){
clr();
for(int i=;i<=m;i++){
int u=read();
int v=read();
dis[u][v]=dis[v][u]=;
}
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
if(!dis[i][j]){
add(i,j);
add(j,i);
}
}
}
for(int i=;i<=n;i++){
if(!dfn[i]){
tarjan(i,);
}
}
for(int i=;i<=slt_cnt;i++){
memset(inslt,,sizeof(inslt));
memset(color,-,sizeof(color));
int u;
for(int j=;j<slt[i].size();j++){
u=slt[i][j];
inslt[u]=;
}
color[u]=;
if(draw(u)){
for(int j=;j<slt[i].size();j++){
u=slt[i][j];
ok[u]=;
}
}
}
int ans=;
for(int i=;i<=n;i++)if(!ok[i])ans++;
printf("%d\n",ans);
n=read();m=read();
}
return ;
}

POJ2942:Knights of the Round Table——题解的更多相关文章

  1. 「题解」:[POJ2942]Knights of the Round Table

    问题 E: Knights of the Round Table 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 作为一名骑士是一个非常有吸引力的职业:寻找圣杯,拯救遇难的少女,与 ...

  2. POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 12439   Acce ...

  3. poj2942 Knights of the Round Table 双连通分支 tarjan

    题解:http://blog.csdn.net/lyy289065406/article/details/6756821 讲的很详细我就不多说了. 题目连接:http://poj.org/proble ...

  4. POJ2942 Knights of the Round Table 点双连通分量,逆图,奇圈

    题目链接: poj2942 题意: 有n个人,能够开多场圆桌会议 这n个人中,有m对人有仇视的关系,相互仇视的两人坐在相邻的位置 且每场圆桌会议的人数仅仅能为奇书 问有多少人不能參加 解题思路: 首先 ...

  5. [POJ2942]:Knights of the Round Table(塔尖+二分图染色法)

    题目传送门 题目描述 亚瑟王要在圆桌上召开骑士会议,为了不引发骑士之间的冲突,并且能够让会议的议题有令人满意的结果,每次开会前都必须对出席会议的骑士有如下要求: .相互憎恨的两个骑士不能坐在直接相邻的 ...

  6. POJ2942:Knights of the Round Table

    传送门 点双练习. 很简单的一道模板题,建立反图,求出点双,二分图判定奇环. //POJ 2942 //by Cydiater //2016.11.2 #include <iostream> ...

  7. POJ2942 Knights of the Round Table(点双连通分量 + 二分图染色)

    题目大概说要让n个骑士坐成一圈,这一圈的人数要是奇数且大于2,此外有些骑士之间有仇恨不能坐在一起,问有多少个骑士不能入座. 双连通图上任意两点间都有两条不重复点的路径,即一个环.那么,把骑士看做点,相 ...

  8. poj2942 Knights of the Round Table,无向图点双联通,二分图判定

    点击打开链接 无向图点双联通.二分图判定 <span style="font-size:18px;">#include <cstdio> #include ...

  9. POJ2942 Knights of the Round Table【Tarjan点双联通分量】【二分图染色】【补图】

    LINK 题目大意 有一群人,其中有一些人之间有矛盾,现在要求选出一些人形成一个环,这个环要满足如下条件: 1.人数大于1 2.总人数是奇数 3.有矛盾的人不能相邻 问有多少人不能和任何人形成任何的环 ...

随机推荐

  1. 2019年猪年海报PSD模板-第四部分

    14套精美猪年海报,免费猪年海报,下载地址:百度网盘,https://pan.baidu.com/s/1WUO4L5PHIHG5hAurv52_2A                        

  2. 「日常训练」Alternative Thinking(Codeforces Round #334 Div.2 C)

    题意与分析 (CodeForces - 603A) 这题真的做的我头疼的不得了,各种构造样例去分析性质... 题意是这样的:给出01字符串.可以在这个字符串中选择一个起点和一个终点使得这个连续区间内所 ...

  3. python一标准异常总结大全(非常全)

    Python标准异常总结 AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) ...

  4. 前端开发工程师 - 02.JavaScript程序设计 - 第1章.基础篇

    第1章--基础篇 JS介绍 html 网页的内容:css 网页的样式:javascript 网页的行为 i.e. hello world <!DOCTYPE html> <html& ...

  5. 了解Python控制流语句——while 语句

    while 语句 Python 中 while 语句能够让你在条件为真的前提下重复执行某块语句. while 语句是 循环(Looping) 语句的一种.while 语句同样可以拥有 else 子句作 ...

  6. HTML+JS = 网站注册界面源代码

    本注册页面未设置编码方式和兼容性,已测试,在Chrome浏览器显示正常 <!DOCTYPE html> <html> <head> <title>注册页 ...

  7. 孤荷凌寒自学python第八十五天配置selenium并进行模拟浏览器操作1

    孤荷凌寒自学python第八十五天配置selenium并进行模拟浏览器操作1 (完整学习过程屏幕记录视频地址在文末) 要模拟进行浏览器操作,只用requests是不行的,因此今天了解到有专门的解决方案 ...

  8. javaee开发工具及环境配置过程

    在配置javaee开发环境的过程中遇到过很多问题,在此系统的整理一下我之前的配置过程 注:配置过程学习自<JSP&Servlet学习笔记(第二版)>详细过程可以阅读此书.在文章的最 ...

  9. Python3 下安装python-votesmart

    在python2下安装python-smart还比较容易,而python3中由于很多函数库的变化直接使用python setup.py install 命令来安装的话会导致错误,而导致错误的原因就是p ...

  10. Thunder团队第六周 - Scrum会议3

    Scrum会议3 小组名称:Thunder 项目名称:i阅app Scrum Master:李传康 工作照片: 参会成员: 王航:http://www.cnblogs.com/wangh013/ 李传 ...