train_mono.sh

单音素训练脚本:

//初始化,[topo feats] -> [0.mdl tree]
gmm-init-mono
//生成训练图,[0.mdl text l.fst] -> [train.fst]
compile-train-graph
//对标签进行初始化对齐[train.fst feats 0.mdl tree] -> [1.ali]
align-equal-compiled
//统计估计模型所需统计量,[feats 1.ali] -> [1.acc]
gmm-acc-stats-ali
//参数重估,估计新的模型 [1.acc] -> [1.mdl]
gmm-est //迭代训练
for i < iteration
//重新统计所需统计量,[$i.ali] -> [$i.acc]
gmm-acc-stats-ali
//估计新的模型,[$i.acc] -> [$i.mdl]
gmm-est
//重新对齐,[train.fst $i.mdl] ->[$i+1.ali]
gmm-align-compiled
//输出最后的模型
final.mdl = $i.mdl

train_deltas.sh

三音素训练脚本:

//特征处理 [feats] -> [feats]
apply-cmvn | add-deltas
//由生成的单音素模型的对齐结果对三音素参数统计,用于生成决策树[final.ali feats] -> [treeacc]
acc-tree-stats
//三音素绑定,[treeacc] -> [tree]
cluster-phone
compile-questions
build-tree //该步骤完成决策树三音素聚类
//三音素模型初始化,[treeacc tree topo] -> [1.occ 1.mdl] -> [1.mdl]
gmm-init-model | gmm-mixup
//将单音素对其文件中的元素替换为决策树的叶子,[final.mdl 1.mdl final.ali] -> [ali.new]
convert-ali
//生成训练图,[1.mdl text l.fst] -> [train.fst]
compile-train-graph //迭代训练
for i < iteration
//重新对齐,[train.fst $i.mdl] ->[$i+1.ali]
gmm-align-compiled
//重新统计所需统计量,[$i.ali] -> [$i.acc]
gmm-acc-stats-ali
//估计新的模型,[$i.acc] -> [$i.mdl]
gmm-est //该步骤增加混合高斯分量的数目
//输出最后的模型
final.mdl = $i.mdl

train_lda_mllt.sh

lda-mllt训练脚本,非说话人自适应,mllt的作用是减少协方差矩阵对角化的损失:

//生成先验概率,统计计算lda所需统计量,[splice-feats final.ali] -> [lda.acc]
ali-to-post
weight-silence-post
acc-lda
//估计lda矩阵,[lda.acc] -> [lda.mat]
est-lda
//通过对转换后的特征重新统计,用于生成决策树[final.ali feats.*lda.mat] -> [treeacc]
acc-tree-stats
//三音素绑定,[treeacc] -> [tree]
cluster-phone
compile-questions
build-tree //该步骤完成决策树三音素聚类
//三音素模型初始化,[treeacc tree topo] -> [1.occ 1.mdl]
gmm-init-model
//将三音素决策树的叶子替换为转换后模型决策树的叶子,[final.mdl 1.mdl final.ali] -> [ali.new]
convert-ali
//生成训练图,[1.mdl text l.fst] -> [train.fst]
compile-train-graph //迭代训练
for i < iteration
//重新对齐,[train.fst $i.mdl] ->[$i+1.ali]
gmm-align-compiled
//同lda,估计mllt的矩阵
ali-to-post | weight-silence-post | gmm-acc-mllt
est-mllt
//对gmm模型进行变换,[mllt.mat mdl] -> [new.mdl]
gmm-transform-means
//组合变换矩阵,[lda.mat mllt.mat] -> [lda.mat]
compose-transforms
//重新统计所需统计量,[$i.ali] -> [$i.acc]
gmm-acc-stats-ali
//估计新的模型,[$i.acc] -> [$i.mdl]
gmm-est //该步骤增加混合高斯分量的数目
//输出最后的模型
final.mdl = $i.mdl

train_sat.sh

说话人自适应模型,fmllr训练脚本:

//生成先验概率,统计计算fmllr所需统计量,[splice-feats spk2utt] -> [trans]
ali-to-post
weight-silence-post
gmm-est-fmllr
//通过对转换后的特征重新统计,用于生成决策树[final.ali feats.*lda.mat] -> [treeacc]
acc-tree-stats
//三音素绑定,[treeacc] -> [tree]
cluster-phone
compile-questions
build-tree //该步骤完成决策树三音素聚类
//三音素模型初始化,[treeacc tree topo] -> [1.occ 1.mdl]
gmm-init-model
//将三音素决策树的叶子替换为转换后模型决策树的叶子,[final.mdl 1.mdl final.ali] -> [ali.new]
convert-ali
//生成训练图,[1.mdl text l.fst] -> [train.fst]
compile-train-graph //迭代训练
for i < iteration
//重新对齐,[train.fst $i.mdl] ->[$i+1.ali]
gmm-align-compiled
//同lda,估计fmllr的矩阵 -> [fmllr.trans]
ali-to-post | weight-silence-post | gmm-est-fmllr
//组合变换矩阵,[trans.mat fmllr.trans] -> [trans.mat]
compose-transforms
//重新统计所需统计量,[$i.ali] -> [$i.acc]
gmm-acc-stats-ali
//估计新的模型,[$i.acc] -> [$i.mdl]
gmm-est //该步骤增加混合高斯分量的数目
//输出最后的模型
final.mdl = $i.mdl

kaldi HMM-GMM全部训练脚本分解的更多相关文章

  1. kaldi基于GMM的单音素模型 训练部分

    目录 1. gmm-init-mono 模型初始化 2. compile-train-graghs 训练图初始化 3. align-equal-compiled 特征文件均匀分割 4. gmm-acc ...

  2. Kaldi单音素模型 训练部分

    在Kaldi中,单音素GMM的训练用的是Viterbi training,而不是Baum-Welch training.因此就不是用HMM Baum-Welch那几个公式去更新参数,也就不用计算前向概 ...

  3. [转]kaldi基于GMM做分类问题

    转自:http://blog.csdn.net/zjm750617105/article/details/55211992 对于每个类别的GMM有几种思路: 第一是将所有训练数据按类别分开,每类的数据 ...

  4. caffe训练脚本文件时遇到./build/tools/caffe: not found

    原文转载:https://blog.csdn.net/zhongshaoyy/article/details/53502373 cifar10训练步骤如下: (1)打开终端,应用cd切换路径,如 cd ...

  5. caffe运行训练脚本时报错:Unknown bottom blob 'data' (layer 'conv1',bottom index 0)

    报错的两种报错原因: 1.输入数的路径错误,需要将路径进行修改排查目录是否出错 2.训练原数据格式不对 3.train.prototxt文件中并未设置test层,而在solver层则设置了test的迭 ...

  6. Baum-Welch算法(EM算法)对HMM模型的训练

    Baum-Welch算法就是EM算法,所以首先给出EM算法的Q函数 \[\sum_zP(Z|Y,\theta')\log P(Y,Z|\theta)\] 换成HMM里面的记号便于理解 \[Q(\lam ...

  7. lua脚本分解字符串

    --local str = "文字45 文字 789 文们adsd45 文字 wowo 文字 文字 wowo我们 wowo456 wiwo 465我们 456sdf 45 45我们adsd4 ...

  8. Kaldi的关键词搜索(Keyword Search,KWS)

    本文简单地介绍了KWS的原理--为Lattice中每个词生成索引并进行搜索:介绍了如何处理OOV--替补(Proxy,词典内对OOV的替补)关键词技术:介绍了KWS的语料库格式:介绍了KWS在Kald ...

  9. [转]异常声音检测之kaldi DNN 训练

    转自:http://blog.csdn.net/huchad/article/details/52092796 使用kaldi的DNN做音频分类,异常声音检测. HMM/GMM -> HMM/D ...

随机推荐

  1. mysql集群压测

    mysql压测 mysql自带就有一个叫mysqlslap的压力测试工具,通过模拟多个并发客户端访问MySQL来执行压力测试,并且能很好的对比多个存储引擎在相同环境下的并发压力性能差别.通过mysql ...

  2. .Net 上传文件到ftp服务器和下载文件

    突然发现又很久没有写博客了,想起哎呦,还是写一篇博客记录一下吧,虽然自己还是那个渣渣猿. 最近在做上传文件的功能,上传到ftp文件服务器有利于管理上传文件. 前面的博客有写到layui如何上传文件,然 ...

  3. Comparable和Compartor的区别

    1.List对象实现Comparable接口,使对象具备可比性 package tao; import java.util.ArrayList; import java.util.Collection ...

  4. 浅谈vue,小程序,react基础绑定值

    最近一直在用react开发项目,碰见的问题千千万,很多,但是都殊途同源,唯一区别大的就是没有像vue的双向绑定,也没有小程序的单向方便,比如: vue   v-modal="msg" ...

  5. Flask中那些特殊的装饰器

    模板相关的装饰器 @app.template_global() 用法: @app.template_global() # 记得加括号 def jiafa(a, b): # 这个方法每调用一次就需要传一 ...

  6. ubuntu下的数据库和python存储库安装——MySQL,MongoDB,Redis

    MySQL 的安装 sudo apt-get updatesudo apt-get install -y mysql-server mysql-client 启动.关闭和重启MySQL 服务的命令如下 ...

  7. C++函数调用之——值传递、指针传递、引用传递

    1.简介 1.值传递:形参时实参的拷贝,改变函数形参并不影响函数外部的实参,这是最常用的一种传递方式,也是最简单的一种传递方式.只需要传递参数,返回值是return考虑的:使用值传递这种方式,调用函数 ...

  8. ruby中的return方法及class实例方法的initialize方法

    return是函数的返回值 class Mtring def initialize(str) @name = str end def aa ary = @name.split(/:/) return ...

  9. IDEA阿里Java规范插件的安装

    本文参考自阿飞博客:http://www.cnblogs.com/aflyun/p/7668306.html 官方使用教程:https://zhuanlan.zhihu.com/p/30191998? ...

  10. jxls-2.x导出excel入门——基本操作

    之前随笔使用的是1.x的比较古老的版本了,已经不再维护,接下来使用较新的2.x的版本进行导出 之前一直按照其他的博客与官网的随笔进行导出,发现一直报错,后面更换了POI的版本为3.16(因为jxls也 ...