Description

给你一个单调不下降的长度为n的序列,请你找出一个最长的子序列,满足找出的子序列中,\(A_i<=A_{i-1}~\times~2\),其中i为下标,A为找出的子序列。对于一个长度为\(p\)的子序列,\(i~\in~[1,p-1]\)。

Input

两行,第一行是原序列的长度\(n\)

第二行是\(n\)个数,代表原序列中的\(n\)个数。

Output

一行一个数,代表最长的长度

Sample Input

10
1 2 5 6 7 10 21 23 24 49

Sample Output

4

Hint

$ 1\leqn\leq2\cdot10^5 $

Solution

这题做法有好多好多啊……

(下面\(a_i\)代表原序列中第\(i\)个位置)

先考虑除了我以外大家都在用的做法:贪心。

贪心策略:

对于第\(i\)个位置,如果它满足\(a_i<=a_{i-1}~\times~2\)那么就把他加到当前序列的结尾中去,否则把他作为新开一个序列的首个元素继续往后扫。

证明:

证明上述策略即证明选择是连续的。

考虑选择第\(i\)个位置的元素。如果下一个元素是第\(j\)个位置的元素\(j~\neq~i+1\),那么一定满足\(a_j<=a_{i}~\times~2\)。

那么对于\(\forall k \in (i,j)\),因为原序列是单调不下降的,所以满足\(a_k~\leq~a_j\)且\(f_k~\geq~a_i\)。所以一定满足\(a_k<=a_{i}~\times~2\)

由于只选择\(j\)选择\(j\)和\(k\)相比,后者更优,所以选择一定是连续的。证毕。

Code:

注:代码提供感谢@Burnside julao
#include<iostream>
using namespace std;
int n;
int cnt=1;
int maxcnt=-1;
int a[200005];
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
for(int i=1;i<n;i++)
{
if(2*a[i]>=a[i+1]) cnt++;
else
{
if(cnt>maxcnt) maxcnt=cnt;
cnt=1;
}
}
if(cnt>maxcnt) maxcnt=cnt;
cout<<maxcnt<<endl;
}

再说说像我这么弱的没想到贪心怎么办= =

拿到这个题的题目描述第一印象觉得这很像一个LIS(最长单调子序列)的题目。所以在考虑进行DP。

设\(f_i\)为以\(i\)位置为结尾的最长序列的长度。考虑状态转移方程为

\(f_i=max\){\(f_j\)}\(+1\),其中\(j\)满足\(a_j~\times~2~\geq~a_i\)。

考虑转移是\(O(n)\)的,难以承受。考虑我们如果知道了最小的\(j\)在哪里,就可以用区间最大值进行转移。发现因为原序列是单调的,所以\(j\)的位置是可以二分的。二分完以后求区间[j.i-1]的最大值加一就是\(f_i\)的答案。

维护区间最大值我们这里选择建一棵十分好写的线段树就解决辣

因为二分\(j\)的复杂度是\(O(logn)\),线段树的复杂度是\(O(logn)\),转移是\(O(1)\)的,共有\(n\)个状态,所以时间复杂度为\(O(nlogn)\),可以通过本题。

Code:

你看这么毒瘤的头文件就知道是我自己写的

#include<cstdio>
#define rg register
#define ci const int
#define cl const long long int typedef long long int ll; namespace IO {
char buf[50];
} template<typename T>
inline void qr(T &x) {
char ch=getchar(),lst=' ';
while(ch>'9'||ch<'0') lst=ch,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if (lst=='-') x=-x;
} template<typename T>
inline void write(T x,const char aft,const bool pt) {
if(x<0) {putchar('-');x=-x;}
int top=0;
do {
IO::buf[++top]=x%10+'0';
x/=10;
} while(x);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template <typename T>
inline T mmax(const T a,const T b) {if(a>b) return a;return b;}
template <typename T>
inline T mmin(const T a,const T b) {if(a<b) return a;return b;}
template <typename T>
inline T mabs(const T a) {if(a<0) return -a;return a;} template <typename T>
inline void mswap(T &a,T &b) {T temp=a;a=b;b=temp;} const int maxn = 200010;
const int maxt = 800010; int n;
int MU[maxn];
int frog[maxt]; int ask(ci,ci,ci,ci,ci);
void change(ci,ci,ci,ci,ci); int main() {
qr(n);
for(rg int i=1;i<=n;++i) qr(MU[i]);
for(rg int i=1;i<=n;++i) {
rg int l=0,r=i,mid=0,_ans=0;
while(l<=r) {
mid=(l+r)>>1;
if((MU[mid]<<1)>=MU[i]) _ans=mid,r=mid-1;
else l=mid+1;
}
if((_ans==0)||(_ans==i)) _ans=1;
else _ans=ask(1,n,1,_ans,i-1)+1;
change(1,n,1,i,_ans);
}
write(ask(1,n,1,1,n),'\n',true);
return 0;
} int ask(ci l,ci r,ci p,ci aiml,ci aimr) {
if(l>r) return 0;
if(l>aimr||r<aiml) return 0;
if(l>=aiml&&r<=aimr) return frog[p];
int mid=(l+r)>>1,dp=p<<1,ddp=dp|1;
return mmax(ask(l,mid,dp,aiml,aimr),ask(mid+1,r,ddp,aiml,aimr));
} void change(ci l,ci r,ci p,ci aim,ci v) {
if(l>r) return;
if(l>aim||r<aim) return;
if(l==r) {frog[p]=v;return;}
int mid=(l+r)>>1,dp=p<<1,ddp=dp|1;
change(l,mid,dp,aim,v);change(mid+1,r,ddp,aim,v);
frog[p]=mmax(frog[dp],frog[ddp]);
}

考虑优化

毕竟这个复杂度比贪心高了一个log,万一数据出上个1e7就凉了。考虑考虑怎么把它优化到\(O(n)\)。

发现对于每个i,它对应的最小的j的位置是单调不下降的。那么我们可以用单调队列维护[j,i]的区间最大值。这样转移达到时间复杂度被优化到了\(O(n)\),可以面对更大的数据范围。

Code:

我懒得写了

【贪心/DP/单调队列】【CF1029B】Creating the Contest的更多相关文章

  1. [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)

    DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...

  2. DP+单调队列 codevs 1748 瑰丽华尔兹(还不是很懂具体的代码实现)

    codevs 1748 瑰丽华尔兹 2005年NOI全国竞赛  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 大师 Master 题解       题目描述 Descripti ...

  3. Luogu 1020 导弹拦截(动态规划,最长不下降子序列,二分,STL运用,贪心,单调队列)

    Luogu 1020 导弹拦截(动态规划,最长不下降子序列,二分,STL运用,贪心,单调队列) Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺 ...

  4. 习题:烽火传递(DP+单调队列)

    烽火传递[题目描述]烽火台又称烽燧,是重要的防御设施,一般建在险要处或交通要道上.一旦有敌情发生,白天燃烧柴草,通过浓烟表达信息:夜晚燃烧干柴,以火光传递军情.在某两座城市之间有n个烽火台,每个烽火台 ...

  5. (noip模拟二十一)【BZOJ2500】幸福的道路-树形DP+单调队列

    Description 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光. 他们画出了晨练路线的草图,眼尖的小T发现可以用树来描绘这个草图. ...

  6. 3622 假期(DP+单调队列优化)

    3622 假期 时间限制: 1 s 空间限制: 64000 KB 题目等级 : 黄金 Gold 题目描述 Description 经过几个月辛勤的工作,FJ决定让奶牛放假.假期可以在1-N天内任意选择 ...

  7. BZOJ4560 JLOI2016字符串覆盖(kmp+贪心+状压dp+单调队列)

    首先kmp求出每个子串能放在哪些位置.接下来的两部分贪心和状压都可以,各取比较方便的. 最大值考虑贪心.考虑枚举子串的左端点出现顺序,在此基础上每个子串的位置肯定都应该尽量靠前,有是否与上个子串有交两 ...

  8. BZOJ.2806.[CTSC2012]Cheat(广义后缀自动机 DP 单调队列)

    题目链接 首先二分答案L.然后就是判断能否将原串划分出一些长度不小于L的子串,这些子串要是给定n个串中的某个串的子串,且满足它们的长度之和不小于原串长度的90%. 贪心多长选一段什么的显然不对.老老实 ...

  9. hdu4123(树形dp+单调队列)

    还没有学过RMQ,所以只能用会的单调队列做. Bob’s Race Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/3276 ...

随机推荐

  1. Selenium(Python)驱动Chrome浏览器

    Chrome浏览器与chromedriver.exe驱动可以是官网上最新的, 随意! Chrome.py: from selenium import webdriverfrom selenium.we ...

  2. zookeeper应用:屏障、队列、分布式锁

    zookeeper工具类: 获取连接实例:创建节点:获取子节点:设置节点数据:获取节点数据:访问控制等. package org.windwant.zookeeper; import org.apac ...

  3. leetcode-组合总数III(回溯)

    组合总和 III 找出所有相加之和为 n 的 k 个数的组合.组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字. 说明: 所有数字都是正整数. 解集不能包含重复的组合.  示例 ...

  4. 407. Plus One【LintCode java】

    Description Given a non-negative number represented as an array of digits, plus one to the number. T ...

  5. 技能get,React的优雅升级!

    今日,我们不啖鸡汤,不饮鸡血 只有干货——关于React的优雅升级 双手奉上,来,干了! -2019年第4期- 夫 子 说 本次升级基础包情况:react 15.6 -> 16.6 升级流程: ...

  6. 开源自动驾驶仿真平台 AirSim (1) - Unreal Engine

    AirSim 官方Github: https://github.com/Microsoft/AirSim AirSim 是微软的开源自动驾驶仿真平台(其实它还能做很多事情,这里主要用于自动驾驶仿真研究 ...

  7. 使用open live writee写的博客

    1. 安装包 下载链接:open live writer 2. 安装及使用教程 学习教程(转载他人) 3. 插入个图片 4. 写段代码 写不了,插件用不了 5. 插件使用: 参考文章:(http:// ...

  8. CryptoZombies学习笔记——Lesson1

    CryptoZombies是一个学习以太坊开发的平台,我将在这里记录学习过程中的一些笔记. 课程网址:cryptozombies.io 首先是第一课——Lesson1:Making the Zombi ...

  9. nordic mesh中的消息缓存实现

    nordic mesh中的消息缓存实现 代码文件msg_cache.h.msg_cache.c. 接口定义 头文件中定义了四个接口,供mesh协议栈调用,四个接口如下所示,接口的实现代码在msg_ca ...

  10. SpringBoot在IntelliJ IDEA下for MAC 热加载

    说在前面 热加载:文件内容变更服务器自动运行最新代码.实则在IDEA环境进行热部署后,下述过程一气呵成. 1代码变更,文件自动保存(IDEA自动保存代码,用户无需使用COMMAND+SAVE快捷键): ...