Spoj1771-Yet Another N-Queen Problem(精确覆盖)
Description
After solving Solution to the n Queens Puzzle by constructing, LoadingTime wants to solve a harder version of the N-Queen Problem. Some queens have been set on particular locations on the board in this problem. Can you help him??
Input
The input contains multiple test cases. Every line begins with an integer N (N<=50), then N integers followed, representing the column number of the queen in each rows. If the number is 0, it means no queen has been set on this row. You can assume there is at least one solution.
Output
For each test case, print a line consists of N numbers separated by spaces, representing the column number of the queen in each row. If there are more than one answer, print any one of them.
Example
Input:
4 0 0 0 0
8 2 0 0 0 4 0 0 0 Output:
2 4 1 3
2 6 1 7 4 8 3 5
题意:N皇后问题,但是棋盘已经有一些皇后,然后问如何选择皇后的位置使得他们互不攻击,N<=50
解析:N这么大,显然不可能爆搜,这里用到的是精确覆盖DLX算法,行表示每个点,DLX的列对应棋盘的行,列和两个方向的斜对角。
搜到N步就可以了,考虑行就好了,不用考虑斜对角什么的。
代码:
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int INF=1e9+;
const int ms=*;
const int maxn=ms*;
int N,ans[],res[];//ans存储第几个选择的编号,res保存第几行答案是第几列
struct DLX
{
int n,id;
int L[maxn],R[maxn],U[maxn],D[maxn];
int C[maxn],S[maxn],loc[maxn][];
int H[ms];
void init(int nn=) //传列长
{
n=nn;
for(int i=;i<=n;i++) U[i]=D[i]=i,L[i]=i-,R[i]=i+;
L[]=n; R[n]=;
id=n;
memset(S,,sizeof(S));
memset(H,-,sizeof(H));
}
void Link(int x,int y)
{
++id;
D[id]=y; U[id]=U[y];
D[U[y]]=id; U[y]=id;
loc[id][]=x,loc[id][]=y;
C[id]=y; S[y]++;
if(H[x]==-) H[x]=L[id]=R[id]=id;
else
{
int a=H[x];
int b=R[a];
L[id]=a; R[a]=id;
R[id]=b; L[b]=id;
H[x]=id;
}
}
void Remove(int c)
{
L[R[c]]=L[c];
R[L[c]]=R[c];
for(int i=D[c];i!=c;i=D[i])
for(int j=R[i];j!=i;j=R[j])
{
U[D[j]]=U[j];
D[U[j]]=D[j];
S[C[j]]--;
}
}
void Resume(int c)
{
for(int i=U[c];i!=c;i=U[i])
for(int j=R[i];j!=i;j=R[j])
{
S[C[j]]++;
U[D[j]]=j;
D[U[j]]=j;
}
L[R[c]]=c;
R[L[c]]=c;
}
bool dfs(int step)
{
if(step>=N) return true;
if(R[]==) return false;
int Min=INF,c=-;
for(int i=R[];i;i=R[i])
{
if(i>N) break;
if(Min>S[i]){ Min=S[i]; c=i; }
}
if(c==-) return false;
Remove(c);
for(int i=D[c];i!=c;i=D[i])
{
ans[step]=loc[i][];
for(int j=R[i];j!=i;j=R[j]) Remove(C[j]);
if(dfs(step+)) return true;
for(int j=L[i];j!=i;j=L[j]) Resume(C[j]);
}
Resume(c);
return false;
}
}dlx;
bool vis[*];
int main()
{
while(scanf("%d",&N)!=EOF)
{
dlx.init(N*-);
memset(vis,false,sizeof(vis));
int y;
for(int x=;x<=N;x++)
{
scanf("%d",&y);
if(y==) continue;
int a=x,b=N+y,c=*N+N+x-y,d=*N+x+y-; //对应的行列斜对角编号
vis[a]=vis[b]=vis[c]=vis[d]=true; //标记
int t=(x-)*N+y-;
dlx.Link(t,a); //连接
dlx.Link(t,b);
dlx.Link(t,c);
dlx.Link(t,d);
}
for(int x=;x<=N;x++)
for(int y=;y<=N;y++)
{
int a=x,b=N+y,c=*N+N+x-y,d=*N+x+y-;
if(vis[a]||vis[b]||vis[c]||vis[d]) continue; //有被占据不考虑
int t=(x-)*N+y-;
dlx.Link(t,a);
dlx.Link(t,b);
dlx.Link(t,c);
dlx.Link(t,d);
}
if(!dlx.dfs()) printf("No answer find\n");
else
{
for(int i=;i<N;i++) res[ans[i]/N]=ans[i]%N;
for(int i=;i<N;i++) printf("%d%c",res[i]+,i==N-?'\n':' ');
}
}
return ;
}
Spoj1771-Yet Another N-Queen Problem(精确覆盖)的更多相关文章
- [DLX精确覆盖] hdu 1603 A Puzzling Problem
题意: 给你n块碎片,这些碎片不能旋转.翻折. 问你能不能用当中的某些块拼出4*4的正方形. 思路: 精确覆盖裸题了 建图就是看看每一个碎片在4*4中能放哪些位置,这个就作为行. 列就是4*4=16个 ...
- 【转】DLX 精确覆盖 重复覆盖
问题描述: 给定一个n*m的矩阵,有些位置为1,有些位置为0.如果G[i][j]==1则说明i行可以覆盖j列. Problem: 1)选定最少的行,使得每列有且仅有一个1. 2)选定最少的行,使得每列 ...
- Hdu3498-whosyourdaddy(精确覆盖模板题)
Problem Description sevenzero liked Warcraft very much, but he haven't practiced it for several year ...
- hihoCoder #1321 : 搜索五•数独 (Dancing Links ,精确覆盖)
hiho一下第102周的题目. 原题地址:http://hihocoder.com/problemset/problem/1321 题意:输入一个9*9数独矩阵,0表示没填的空位,输出这个数独的答案. ...
- DLX精确覆盖与重复覆盖模板题
hihoCoder #1317 : 搜索四·跳舞链 原题地址:http://hihocoder.com/problemset/problem/1317 时间限制:10000ms 单点时限:1000ms ...
- dancing link 精确覆盖 重复覆盖 (DLX)
申明:因为转载的没有给出转载链接,我就把他的链接附上,请尊重原创: http://www.cnblogs.com/-sunshine/p/3358922.html 如果谁知道原创链接 给一下,请尊重原 ...
- 跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题
精确覆盖问题的定义:给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个1 例如:如下的矩阵 就包含了这样一个集合(第1.4.5行) 如何利用给定的矩阵求出相应的行的集合 ...
- HDU 3957 Street Fighter(搜索、DLX、重复覆盖+精确覆盖)
很久以前就看到的一个经典题,一直没做,今天拿来练手.街霸 给n<=25个角色,每个角色有 1 or 2 个版本(可以理解为普通版以及爆发版),每个角色版本可以KO掉若干人. 问最少选多少个角色( ...
- HDU 3111 Sudoku(精确覆盖)
数独问题,输入谜题,输出解 既然都把重复覆盖的给写成模板了,就顺便把精确覆盖的模板也写好看点吧...赤裸裸的精确覆盖啊~~~水一水~~~然后继续去搞有点难度的题了... #include <cs ...
随机推荐
- xcode插件——新建cocos2dx工程
个人制作的一个创建cocos2dx工程的xcode小插件 按照readme安装一下即可. 创建工程后,将自动弹出finder到工程目录. 弹出窗口:
- virsh -c exs://ip/?no_verify=1 --readonly nodeinfo
- SQL 使用经验
1. 写存储过程,Update数据库表,一定要根据idRow,也就是主键唯一键来更新. 更新操作,如果根据其他条件更新,之后就有的忙活了. 2. Query语句要加NOLOCK
- 使用android-resource-remover删除项目中无用的资源,减少包的大小
写这篇文章的原因是,一个CSDN的资源链接,Android程序员必备精品资源,在该链接的实用工具集锦中有一个工具吸引了我的注意,那就是android-resource-remover,它的解释是:一个 ...
- CentOS6.6修改主机名和网络信息
1.修改主机名称 [root@centos ~]# vim /etc/sysconfig/network #打开文件,修改以下内容并保存 NETWORKING=yes #使用网络HOSTNAME=ce ...
- 《第一行代码》学习笔记19-广播接收器Broadcast_Receiver(2)
1.解决广播的安全性问题,Android引入了一套本地广播机制,使用该机制发出的广播只能够在应用程序内部进行传递,并且广播接收器只能 接收来自本应用程序发出的广播. 2.本地广播无法通过静态注册来接收 ...
- myeclipse添加svn
一直在用MyEclipse,每次重装或者换开发环境时都需要安装svn插件,每次都是在网上找,感觉没有说的太明白的,还是自己写个以备将来查看. 安装svn插件有很多种方式,在线的.离线的.解压的(又分为 ...
- cobar和tddl分享
Cobar是阿里巴巴(B2B)部门开发的一种关系型数据的分布式处理系统,它可以在分布式的环境下看上去像传统数据库一样为您提供海量数据服务.那么具体说说我们为什么要用它,或说cobar--能干什么?以下 ...
- ios面试汇总
http://www.360doc.com/content/15/0707/01/26281448_483232245.shtml
- iOS 关于时间戳的一些细节
最近遇到一个bug,在iPhone上获取当前的时间戳,没有问题,而用iPad来测试的时候,出现了时间戳不对.当时的代码 (需要精确到毫秒,所以*1000) NSTimeInterval t = [[N ...