/**
大意: 给定整数N,1<= x,y <= N 求解有多少gcd(x,y) 为素数 n=10^7
思路: 首先考虑到n 如此之大,用的快速求欧拉函数。
先默认 y〉x
分析: gcd(x,y) =2, gcd(x,y) = 3, gcd(x,y) = 5, gcd(x,y) = 7。。。。
即 gcd(x,y/2) =1, gcd(x, y/3) =1, gcd(x, y/5) =1, gcd(x,y/7) = 1 。。。。
以gcd(x,y) = 2 为例 -----> gcd(x,y/2) = 1;
就是求比y/2小的所有与y/2 互质数的个数。。。y取值为2,4,6,8,10.。。。
所以siga(gcd(x,2)=2 + gcd(x,4) =2 + gcd( x,6) =2 + 。。。)=
----->siga(gcd(x,1)=1 + gcd(x,2) =1 + gcd( x,3) =1 + 。+ gcd(x,n/2)=1)
其他的同理。。。
所以先预处理 小于n 的所有互质数的个数 s[i] = s[i-1]+phi[i];
使用时
if(n>=prime[i]){
ans += 2*s[n/prime[i]]-1; (也有可能x 〉y)
}
**/ #include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; #define Max 10000000 long long s[Max+],f[Max+],phi[Max+];
int prime[Max/];
bool flag[Max+];
int num;
void init()
{
int i,j;
num=;
memset(flag,,sizeof(flag));
phi[]=;
for(i=;i<=Max;i++){//欧拉筛选
if(flag[i])
{
prime[num++]=i;
phi[i]=i-;
}
for(j=;j<num && prime[j]*i<=Max;j++)
{
flag[i*prime[j]]=false;
if(i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
s[] =;
for(int i=;i<Max;i++)
s[i] = s[i-]+phi[i];
} int main(){
init();
long long n;
while(cin>>n){
long long ans =;
for(int i=;i<num;i++)
if(n>=prime[i]){
ans += *s[n/prime[i]]-;
}
cout<<ans<<endl;
}
}

HYSBZ 2818 gcd的更多相关文章

  1. HYSBZ 2818 Gcd【欧拉函数/莫比乌斯】

    I - Gcd HYSBZ - 2818 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample In ...

  2. HYSBZ - 2818 Gcd (莫比乌斯反演)

    莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...

  3. ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)

    Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...

  4. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  5. BZOJ 2818: Gcd

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4443  Solved: 1960[Submit][Status][Discuss ...

  6. bzoj 2818: Gcd GCD(a,b) = 素数

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1566  Solved: 691[Submit][Status] Descript ...

  7. bzoj 2818: Gcd 歐拉函數

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1633  Solved: 724[Submit][Status] Descript ...

  8. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

  9. 2818: Gcd

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2170  Solved: 979[Submit][Status][Discuss] ...

随机推荐

  1. Apache Maven-AntRun-Plugin 官网 bug

    Maven AntRun Plugin 今天在 Apache maven-antrun-plugin 官网查找资料时,竟然发现了一个bug!! 在此记录下,以免在同一个地方摔倒两次! 想起一句话,尽信 ...

  2. golang printf

    1:  打印包括字段在内的实例的完整信息 同 %+V fmt.Printf("Hello world! %v","hufeng") 输出:Hello world ...

  3. 嵌入式系统 Boot Loader

    基于嵌入式系统中的 OS 启动加载程序 ―― Boot Loader 的概念.软件设计的主要任务以及结构框架等内容.

  4. 微型 ORM 的第一篇 DapperLambda发布

    引言:因为接触过多个ORM,但使用的时候都遇到了各自的一些不够理想的地方,从最早开始开始公司自己分装的,到后面用EF,以及Dapper和DapperExtensions  到现在用的FluentDat ...

  5. Lucence.net索引技术 二

    一. Lucene索引创建和优化 [版本2.9.0以上] Lucene索引的创建首先需要取得几个必须的对象: 1.分词器//可以采用其他的中文分词器 StandardAnalyzer analyzer ...

  6. Object-c Block的使用及说明

    Object-c 中的block就好像一段C函数般,由函数名,有返回值,有参数,由函数体等 1.简单的block ^(int A ,int B) { int C=A*B; return C; }; 上 ...

  7. java json的处理

    maven依赖 <dependencies> <dependency> <groupId>com.alibaba</groupId> <artif ...

  8. ASP.net WebAPI 上传图片

    [HttpPost] public Task<Hashtable> ImgUpload() { // 检查是否是 multipart/form-data if (!Request.Cont ...

  9. android 构建数据库SQLite

    1.首先我们需要一个空白的eclipse android工程 2.然后修改AndroidManifest.xml 在<application></application>标签里 ...

  10. 关于android源码中的APP编译时引用隐藏的API出现的问题

    今天在编译android源码中的计算器APP时发现,竟然无法使用系统隐藏的API,比如android.os.ServiceManager中的API,引用这个类时提示错误,记忆中在android源码中的 ...