poj3070 Fibonacci 矩阵快速幂
学了线代之后 终于明白了矩阵的乘法。。
于是 第一道矩阵快速幂。。
实在是太水了。。。
这差不多是个模板了
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <iostream>
using namespace std; int N; struct matrix
{
int a[3][3];
}origin,res; matrix multiply(matrix x,matrix y)
{
matrix temp;
memset(temp.a,0,sizeof(temp.a));
for(int i=0;i<2;i++)
{
for(int j=0;j<2;j++)
{
for(int k=0;k<2;k++)
{
temp.a[i][j]+=(x.a[i][k]*y.a[k][j]%10000);
temp.a[i][j]%=10000;
}
}
}
return temp;
} void init()
{
memset(res.a,0,sizeof(res.a));
res.a[0][0]=res.a[1][1]=1;
res.a[1][0]=res.a[0][1]=0;
origin.a[0][0]=origin.a[0][1]=origin.a[1][0]=1;
origin.a[1][1]=0;
} void calc(int n)
{
while(n)
{
if(n&1)
res=multiply(res,origin);
n>>=1;
origin=multiply(origin,origin);
}
printf("%d\n",res.a[0][1]%10000);
} int main()
{
while(scanf("%d",&N)&&N!=-1)
{
init();
calc(N);
}
return 0;
}
poj3070 Fibonacci 矩阵快速幂的更多相关文章
- POJ3070:Fibonacci(矩阵快速幂模板题)
http://poj.org/problem?id=3070 #include <iostream> #include <string.h> #include <stdl ...
- poj 3070 Fibonacci (矩阵快速幂乘/模板)
题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...
- poj 3070 Fibonacci 矩阵快速幂
Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...
- HDU 1588 Gauss Fibonacci(矩阵快速幂)
Gauss Fibonacci Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- UVA - 10229 Modular Fibonacci 矩阵快速幂
Modular Fibonacci The Fibonacci numbers (0, 1, 1, 2, 3, 5, 8, 13, 21, 3 ...
- POJ 3070 Fibonacci 矩阵快速幂模板
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 18607 Accepted: 12920 Descr ...
- $loj$10222 佳佳的$Fibonacci$ 矩阵快速幂
正解:矩阵快速幂 解题报告: 我永远喜欢loj! 一看到这个就应该能想到矩阵快速幂? 然后就考虑转移式,发现好像直接想不好想,,,主要的问题在于这个*$i$,就很不好搞$QAQ$ 其实不难想到,$\s ...
- POJ 3070 Fibonacci矩阵快速幂 --斐波那契
题意: 求出斐波那契数列的第n项的后四位数字 思路:f[n]=f[n-1]+f[n-2]递推可得二阶行列式,求第n项则是这个矩阵的n次幂,所以有矩阵快速幂模板,二阶行列式相乘, sum[ i ] [ ...
- hdu 3306 Another kind of Fibonacci 矩阵快速幂
参考了某大佬的 我们可以根据(s[n-2], a[n-1]^2, a[n-1]*a[n-2], a[n-2]^2) * A = (s[n-1], a[n]^2, a[n]*a[n-1], a[n-1] ...
随机推荐
- spring和mybatis整合进行事务管理
1.声明式实现事务管理 XML命名空间定义,定义用于事务支持的tx命名空间和AOP支持的aop命名空间: <beans xmlns="http://www.springframewor ...
- RSA, ACS5.X 集成配置
目的是RSA和ACS集成,ACS作为RADIUS服务器提供二次验证服务. ①配置RSA SecurID Token Servers 按照如下网址配置: http://www.cisco.com/c ...
- 我用的比较少的CSS选择器
选择器 描述 [attribute] 用于选取带有指定属性的元素. [attribute=value] 用于选取带有指定属性和值的元素. [attribute~=value] 用于选取属性值中包含指定 ...
- ThinkPHP第十一天(关联模型使用,独立分组配置,MySQL concat用法)
1.关联模型的使用 定义方式:新建一个类文件UserRelationModel.class.php Class UserRelationModel extends RelationModel{ pro ...
- 配置 .vimrc 解决 Vim / gVim 在中文 Windows 下的字符编码问题
转载自:-杨博的日志 - 网易博客 Vim / gVim 在中文 Windows 下的字符编码有两个问题: 默认没有编码检测功能 如果一个文件本身采用的字符集比 GBK 大(如 UTF-8.UTF-1 ...
- 设置textarea文本域不能调整大小 resize
CSS3中新增了resize缩放属性,这个属性可以应用到任意元素.目前只有Webkit内核的浏览器才支持这个css3属性,即Google chrome和Apple safari都支持.而textare ...
- Python类的继承演示样例
class Pet: __name = "" def __init__(self, name): self.__name = name def bark(self): return ...
- AsyncQueryHandler处理数据
参考:http://blog.csdn.net/hfreeman2011/article/details/8555474和http://blog.csdn.net/dragondog/article/ ...
- 断开/删除 SVN 链接(.svn)的几种方法
上传到正式的服务器时需要去掉这些不必要的文件,找到了几种方法: 1.windows下: xcopy project_dir project_dir_1 /s /i (从project_dir 复制文件 ...
- 面向对象程序设计-C++ Operator Overloading & Type conversion (Static)【第十一次上课笔记】
本次上课继续讲解了 [ ] .-> 等运算符重载的具体例子 也讲解了C++单个参数的类的类型转换的案例 最后稍微提到了 static 的第三种作用:静态数据成员 具体详解我都已注释出来了,大家可 ...