The 3n + 1 problem
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 50513   Accepted: 15986

Description

Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs. 
Consider the following algorithm:


		1. 		 input n

		2. 		 print n

		3. 		 if n = 1 then STOP

		4. 		 		 if n is odd then   n <-- 3n+1

		5. 		 		 else   n <-- n/2

		6. 		 GOTO 2

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

Given an input n, it is possible to determine the number of numbers printed before the 1 is printed. For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.

Input

The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 10,000 and greater than 0.

You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.

Output

For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

Sample Input

1 10
100 200
201 210
900 1000

Sample Output

1 10 20
100 200 125
201 210 89
900 1000 174

Source

Duke Internet Programming Contest 1990,uva 100
简单直述式模拟,水题,主要注意输出时n,m必须按照输入时候的顺序输出,我们在程序操作时调换了大小了

poj1207的更多相关文章

  1. poj-1207 THE 3n+1 problem

    Description Problems in Computer Science are often classified as belonging to a certain class of pro ...

  2. poj1207 3n+1 problem

    The 3n + 1 problem Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 60496   Accepted: 19 ...

  3. Poj1207 The 3n + 1 problem(水题(数据)+陷阱)

    一.Description Problems in Computer Science are often classified as belonging to a certain class of p ...

  4. ACM训练计划建议(写给本校acmer,欢迎围观和指正)

    ACM训练计划建议 From:freecode#  Date:2015/5/20 前言: 老师要我们整理一份训练计划给下一届的学弟学妹们,整理出来了,费了不少笔墨,就也将它放到博客园上供大家参考. 菜 ...

  5. 【POJ水题完成表】

    题目 完成情况 poj1000:A+B problem 完成 poj1002:电话上按键对应着数字.现在给n个电话,求排序.相同的归一类 完成 poj1003:求最小的n让1+1/2+1/3+...+ ...

  6. poj 算法 分类

    转载请注明出处:優YoU http://blog.csdn.net/lyy289065406/article/details/6642573 最近AC题:2528   更新时间:2011.09.22  ...

  7. POJ1008 1013 1207 2105 2499(全部水题)

    做了一天水题,挑几个还算凑合的发上来. POJ1008 Maya Calendar 分析: #include <iostream> #include <cstdio> #inc ...

  8. POJ 水题(刷题)进阶

    转载请注明出处:優YoU http://blog.csdn.net/lyy289065406/article/details/6642573 部分解题报告添加新内容,除了原有的"大致题意&q ...

  9. ACM训练计划建议(转)

    ACM训练计划建议 From:freecode#  Date:2015/5/20 前言: 老师要我们整理一份训练计划给下一届的学弟学妹们,整理出来了,费了不少笔墨,就也将它放到博客园上供大家参考. 菜 ...

随机推荐

  1. SQL Server 查看正在运行的事务信息的 2 种方法。

    方法 1.sys.dm_tran_session_transactions; 方法 2.dbcc opentran ------------------------------------------ ...

  2. ca 证书、签名

    1.我现在没有个人CA证书,使用.中信建投网上交易,是如何保障安全的呢? 如果您目前没有个人CA证书,使用.中信建投网上交易,系统其实也是用CA证书的RSA体系进行加密的. 您在输入账户和密码进行登录 ...

  3. 在WPF中自定义你的绘制(五)

    原文:在WPF中自定义你的绘制(五) 在WPF中自定义你的绘制(五)                                                                   ...

  4. 在Eclipse中创建打开文件夹快捷键

    Run 展开如下菜单: Run ---- External Tools ---- External Tools Configurations 在 program 下面新建一个工具 在 Location ...

  5. POJ-1088 Skiing(记忆化搜索)

    Description Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道 ...

  6. 国内常用ntp服务器ip地址

    ntp.sjtu.edu.cn 202.120.2.101 (上海交通大学网络中心NTP服务器地址)s1a.time.edu.cn 北京邮电大学s1b.time.edu.cn 清华大学s1c.time ...

  7. PHP出现Notice: unserialize() [function.unserialize]: Error at offset问题的解决方案

    有两个原因(据我所知)会导致这个问题: (1) 字符串本身的问题 (2)字符编码的问题. 你unserialize的字符串的编码和文件本身的编码不一致.将文件编码改成和字符串一样的编码.这种问题比较隐 ...

  8. 1033. To Fill or Not to Fill (25)

     题目链接:http://www.patest.cn/contests/pat-a-practise/1033 题目: 1033. To Fill or Not to Fill (25) 时间限制 1 ...

  9. Sublime 学习记录(五) Sublime 其他插件(个人喜好)

    (一)  JSFormat 安装 :命令面板 pci 回车 JSFormat 回车 功能 : javascript的代码格式化插件 简介 : 很多网站的JS代码都进行了压缩,一行式的甚至混淆压缩,这让 ...

  10. div滚动与控制

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"><html><head&g ...