题意

一个h*w的矩阵上面涂k种颜色,并且每行相邻格子、每列相邻格子都有=或者!=的约束。要求构造一种涂色方案使得至少有3/4的条件满足。

思路

脑补神题……自己肯定想不出来T_T……


官方题解:

297D - Color the Carpet

This is my favorite problem in the contest :)

For k = 1 there is only one coloring so we just need to check the number of "E" constraints. When k ≥ 2, it turns out that using only 2color is sufficient to do so.

We will call the constraints that involves cells in different row "vertical constraints", and similar for "horizontal constraints".

First of all, we color the first row such that all horizontal constraints in row 1 are satisfied. We will color the remaining rows one by one.

To color row i, first we color it such that all horizontal constraints in row i are satisfied. Then consider the vertical constraints between row i and row i - 1. Count the number of satisfied and unsatisfied vertical constraints. If there are more unsatisfied constraints than satisfied constraints, flip the coloring of row i. Flipping a row means 2211212 → 1122121, for example.

If we flip the coloring of row i, all horizontal constraints in row i are still satisfied, but for the vertical constraints between row i and row i - 1, satisfied will becomes unsatisfied, unsatisfied will becomes satisfied. Therefore, one can always satisfy at least half the vertical constraints between row i and row i - 1.

Now for each row, all horizontal constraints are satisfied, at least half vertical constraints with the upper row are satisfied. It seems that we have got 75% satisfied in total. Unfortunately, the is exactly one more vertical constraints than horizontal constraints, which may make the fraction of satisfied constraints slightly less than 75%.

Luckily, we still have the all-satisfied first row. We can 'take' one satisfied horizontal constraints from it, and now we are guaranteed to have 75% satisfied constraints for row i. This also implies that the width of the table should be no less than the height of the table. If it is not in the case, rotate the table.


 

CodeForces 297D Color the Carpet (脑补题)的更多相关文章

  1. CodeForces 297C Splitting the Uniqueness (脑补构造题)

    题意 Split a unique array into two almost unique arrays. unique arrays指数组各个数均不相同,almost unique arrays指 ...

  2. CodeForces 297A Parity Game (脑补题)

    题意 一个01串,可以有两种操作:①在末尾添加parity(a):②删除开头的一个字符.其中parity(a),当串中1的个数为奇数时为1,偶数时为0.问某个01串是否可以通过若干操作变成另一个01串 ...

  3. Educational Codeforces Round 24 CF 818 A-G 补题

    6月快要结束了 期末也过去大半了 马上就是大三狗了 取消了小学期后20周的学期真心长, 看着各种北方的学校都放假嗨皮了,我们这个在北回归线的学校,还在忍受酷暑. 过年的时候下定决心要拿块ACM的牌子, ...

  4. Educational Codeforces Round 11 C hard process_补题——作为司老大的脑残粉

    司老大当时教了一种姿势枚举连续K个0,说实话当时比赛写这题完全蒙了 纵然后来知道思路还是写了一段时间 真的是.. 题目大意 n长度的序列,由0 1构成 我们可以改变 k个0为1 求可以得到的最长连续1 ...

  5. Codeforces 补题记录

    首先总结一下前段时间遇到过的一些有意思的题. Round #474 (Div. 1 + Div. 2, combined)   Problem G 其实关键就是n这个数在排列中的位置. 这样对于一个排 ...

  6. 【cf补题记录】Codeforces Round #608 (Div. 2)

    比赛传送门 再次改下写博客的格式,以锻炼自己码字能力 A. Suits 题意:有四种材料,第一套西装需要 \(a\).\(d\) 各一件,卖 \(e\) 块:第二套西装需要 \(b\).\(c\).\ ...

  7. 【cf补题记录】Codeforces Round #607 (Div. 2)

    比赛传送门 这里推荐一位dalao的博客-- https://www.cnblogs.com/KisekiPurin2019/ A:字符串 B:贪心 A // https://codeforces.c ...

  8. Codeforces VP/补题小记 (持续填坑)

    Codeforces VP/补题小记 1149 C. Tree Generator 给你一棵树的括号序列,每次交换两个括号,维护每次交换之后的直径. ​ 考虑括号序列维护树的路径信息和,是将左括号看做 ...

  9. 2017河工大校赛补题CGH and 赛后小结

    网页设计课上实在无聊,便开始补题,发现比赛时候僵着的东西突然相通了不少 首先,"追妹"这题,两个队友讨论半天,分好多种情况最后放弃(可是我连题目都没看啊),今天看了之后试试是不是直 ...

随机推荐

  1. testng生成报告 testng-xslt 美化测试报告

    testng生成报告 testng-xslt 美化测试报告 testng生成报告 testng-xslt 美化测试报告 用TestNG测试后,自动会生成html的测试报告.利用 testNG-xslt ...

  2. Rundeck概况

    1.Rundeck介绍 RunDeck是用Java/Grails写的开源工具,帮助用户在数据中心或者云环境中自动化各种操作和流程.通过命令行或者web界面,用户可以对任意数量的服务器进行操作,大大降低 ...

  3. 84. Largest Rectangle in Histogram(直方图最大面积 hard)

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  4. Core ML 入门

    1.下载Xcode 9 2.下载模型,https://developer.apple.com/machine-learning/ 3.开动.. 4.待续 模拟器66的

  5. 对称加密与非对称加密,以及RSA的原理

    一 , 概述 在现代密码学诞生以前,就已经有很多的加密方法了.例如,最古老的斯巴达加密棒,广泛应用于公元前7世纪的古希腊.16世纪意大利数学家卡尔达诺发明的栅格密码,基于单表代换的凯撒密码.猪圈密码, ...

  6. Java基础知识---continue

    一:java概述: 1991 年Sun公司的James Gosling等人开始开发名称为 Oak 的语言,希望用于控制嵌入在有线电视交换盒.PDA等的微处理器: 1994年将Oak语言更名为Java: ...

  7. Zstack中任务,事件,消息之间的关系

    Zstack是Zigbee协议的具体实现,在实现的过程中为了能够更好的对各个模块和功能进行管理,所以加入了OSAL(Operating System Abstraction Layer 操作系统抽象层 ...

  8. Linux ASLR的实现

    ASLR大家都会听说过,但是Linux平台下应用程序的ASLR的情况是怎么样的呢?我在这里将ASLR分为几个小的部分来阐述,包括了栈的随机化,堆的随机化,mmap的随机化,以及pie程序运行时的主模块 ...

  9. ArchLinux基本系统到XFCE4桌面搭建

      Keep It Simple, Stupid 这是ArchLinux的哲学,更是一种人生哲学 好久没用linux了,这段时间因为一点点"破坏性"需求重新拾起linux用了一把 ...

  10. tomcat优化方案(转)

    1.内存设置(VM参数调优) (1).Windows环境下,是tomcat解压版(执行startup.bat启动tomcat) ,解决办法: 修改“%TOMCAT_HOME%\bin\catalina ...