pandas 运算
Data frame 和 series 的运算:
横列相加减:按照index ,row 的方向直接相加减。frame-series
纵列相加减:按照 columns,运用算术函数,相加减。
frame.sub(series3, axis=0)
'''operation between data frame and series '''
import numpy as np
from pandas import Series, DataFrame arr = np.arange(12.).reshape((3, 4))
print(arr)
print("arr[0]:")
print(arr[0])
print("arr-arr[0]:")
print(arr-arr[0]) print("Operation between data frame and series")
frame = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'), index=['Utah', 'Ohio', 'Texas', 'Oregon']) series = frame.ix[0] print("frame is \n", frame)
print("series is \n", series)
print("frame-series: \n", frame-series) series2 = Series(range(3), index=['b', 'e', 'f'])
print("if an index value is not found in either the DataFrame's columns or the Series' index")
print("series2:\n", series2)
print("frame+series2:\n", frame+series2) series3 = frame['d']
print("frame is \n", frame)
print("series3 is \n", series3)
print("if you want to instead broadcast over the columns,matching on the rows,you have to use one columns: ")
print("frame.sub(series3,axis=0: \n", frame.sub(series3, axis=0))
pandas 运算的更多相关文章
- (数据科学学习手札86)全平台支持的pandas运算加速神器
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 随着其功能的不断优化与扩充,pandas已然成为 ...
- Python: Pandas运算的效率探讨以及如何选择高效的运算方式
本文就Pandas的运行效率作一个对比的测试,来探讨用哪些方式,会使得运行效率较好. 测试环境如下: windows 7, 64位 python 3.5 pandas 0.19.2 numpy 1.1 ...
- 教程 | 一文入门Python数据分析库Pandas
首先要给那些不熟悉 Pandas 的人简单介绍一下,Pandas 是 Python 生态系统中最流行的数据分析库.它能够完成许多任务,包括: 读/写不同格式的数据 选择数据的子集 跨行/列计算 寻找并 ...
- 多快好省地使用pandas分析大型数据集
1 简介 pandas虽然是个非常流行的数据分析利器,但很多朋友在使用pandas处理较大规模的数据集的时候经常会反映pandas运算"慢",且内存开销"大". ...
- 历史文章分类汇总-Anaconda安装第三方包(whl文件)
本文主要是对公众号之前发布的文章进行分类整理,方面大家查阅,以后会不定期对文章汇总进行更新与发布. 一.推荐阅读: Anaconda安装第三方包(whl文件) 福布斯系列之数据分析思路篇 福布斯系 ...
- pandas聚合和分组运算——GroupBy技术(1)
数据聚合与分组运算——GroupBy技术(1),有需要的朋友可以参考下. pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片.切块.摘要等操作.根据一个或多个 ...
- Pandas分组级运算和转换
分组级运算和转换 假设要添加一列的各索引分组平均值 第一种方法 import pandas as pd from pandas import Series import numpy as np df ...
- pandas学习(数据分组与分组运算、离散化处理、数据合并)
pandas学习(数据分组与分组运算.离散化处理.数据合并) 目录 数据分组与分组运算 离散化处理 数据合并 数据分组与分组运算 GroupBy技术:实现数据的分组,和分组运算,作用类似于数据透视表 ...
- pandas DataFrame(4)-向量化运算
pandas DataFrame进行向量化运算时,是根据行和列的索引值进行计算的,而不是行和列的位置: 1. 行和列索引一致: import pandas as pd df1 = pd.DataFra ...
随机推荐
- zabbix详解(一)
zabbix简介 zabbix是一个基于WEB界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案. zabbix能监视各种网络参数,保证服务器系统的安全运营:并提供柔软的通知机制以让系统管 ...
- 登录plsql 报错 the account is locked --用户被锁
登录数据库服务器,进入oracle用户下: [root@uumsnormal-oracle admin]# su - oracle [oracle@uumsnormal-oracle ~]$ sqlp ...
- 深入理解Flink核心技术(转载)
作者:李呈祥 Flink项目是大数据处理领域最近冉冉升起的一颗新星,其不同于其他大数据项目的诸多特性吸引了越来越多的人关注Flink项目.本文将深入分析Flink一些关键的技术与特性,希望能够帮助读者 ...
- Spark2.0 特征提取、转换、选择之二:特征选择、文本处理,以中文自然语言处理(情感分类)为例
特征选择 RFormula RFormula是一个很方便,也很强大的Feature选择(自由组合的)工具. 输入string 进行独热编码(见下面例子country) 输入数值型转换为double(见 ...
- .globl分析
Uboot中常看到.globl .globl _start _start: b reset .align .globl _TEXT_BASE _TEXT_BASE: .globl _start /* ...
- C的指针疑惑:C和指针10(结构和联合)
结构也可以作为传递给函数的参数,它们也可以作为返回值从函数返回,相同类型的结构体变量相互之间可以赋值. 申明结构时使用另一种良好技巧是用typedef创建一种新的类型. typedef struct{ ...
- 执行Java脚本firefox启动成功,不运行test方法,且提示NullPointerException
在ideal中新建maven项目,将录制好的Java脚本文件,直接复制到项目中,添加相关的依赖脚本. 代码不报错之后,运行录制好的Java脚本,启动了firefox之后,不执行test方法,报错Nul ...
- 模块讲解----time与date time(时间模块)
time和datetime 在python中,通常有一下几种方式来表示时间:1.时间戳:2.格式化时间字符串:3.元祖(struct_time):其中元祖(struct_time分为九个元素) UTC ...
- 20165324 Java实验一
20165324 实验一 一.实验报告封面 课程:Java程序设计 班级:1653班 姓名:何春江 学号:20165324 指导教师:娄嘉鹏 实验日期:2018年4月2日 实验时间:13:45 - 1 ...
- Python eval() 的使用:将字符串转换为列表,元祖,字典
eval() 函数用来执行一个字符串表达式,并返回表达式的值. 语法 以下是 eval() 方法的语法: eval(expression[, globals[, locals]]) 参数 expres ...