PBR Step by Step(三)BRDFs
BRDF
BRDF(Bidirectional Reflectance Distribution Function)双向反射分布函数,用来描述给定入射方向上的入射辐射度以及反射方向上的出辐射度分布,BRDF提供了一种相对准确的计算方法。
如图所示,点\({P}\)处\({d \omega}\)内的入射辐射度为\({dE_i(p, \omega_i)}\),反射方向\({\omega_o}\)上的出射辐射度为\({dL_o(p, \omega_o)}\)。
BRDF遵循能量守恒原则,入射辐射度与出射辐射度应呈正比例关系,\({dL_o(p, \omega_o)}\)随\({dE_i(p, \omega_i)}\)的增加而增大。可表示为:
\({dL_o(p, \omega_o)} \propto {dE_i(p, \omega_i)}\)
如果用\({f_r(p, \omega_i, \omega_o)}\)表示BRDF比例系数,则:
\({dL_o(p, \omega_o)} = {f_r(p, \omega_i, \omega_o)}{dE_i(p, \omega_i)}\)
在上一篇中,我们知道入射辐射度\({dE_i(p, \omega_i)}={L_i(p, \omega_i) \, \cos \theta_i \, d \omega_i}\),代入上式得:
\({dL_o(p, \omega_o)} = {f_r(p, \omega_i, \omega_o)}{L_i(p, \omega_i) \, \cos \theta_i \, d \omega_i}\)
那么BRDF的比例系数\({f_r(p, \omega_i, \omega_o)}=\frac{dLo(p,\omega_o)}{L_i(p,\omega_i)\, \cos \theta_i \, d\omega_i)}\)
反射辐射度方程
由上面的公式,可知在立体角\({\Omega_i}\)上的反射辐射度的方程为:
\({L_o(p,\omega_o)}=\int_{\Omega_i}{f_r(p, \omega_i, \omega_o)}\, {L_i(p, \omega_i)}\, {\cos \theta_i}\, {d\omega_i}\)
BRDFs的特征
- 满足交换率:若交换\(\omega_i\)和\(\omega_o\),最终的BRDF值保持不变。就是说若改变光的传播方向,辐射度保持不变。
- 满足线性特征:物体表面上一点的全部反射辐射度等于各BRDF反射辐射度之和。
- 遵循能量守恒:现实中不存在可以完全反射物体表面的入射光的材质,部分能量会被物体表面吸收并以其他形式再次反射。所以物体表面面片\({dA}\)上的各向反射辐射度小于总的吸收能量。
反射率Reflatance
反射率是反射通量和入射通量的比例系数。在上一篇讲的关于辐射度的内容中,我们知道\({\Omega_i}\)上的入射辐射度:
\({E_i(p, \, \omega_i)} = \frac{d\Phi_i}{dA} = \int_{\Omega_i} {L_i(p, \, \omega_i) \, \cos \theta_i \, d \omega_i}\)
可推出\({\Omega_i}\)上的入射辐射通量\({d\Phi_i} = {dA} \int_{\Omega_i} {L_i(p, \, \omega_i) \, \cos \theta_i \, d \omega_i}\)
对于\({\Omega_o}\)上的同一面片中的反射通量为:
\({d\Phi_o} = {dA} \int_{\Omega_o}{L_o(p, \, \omega_o) \, \cos \theta_o \, d \omega_o}\)
将上面的反射辐射度方程代入,得:
\({d\Phi_o} = {dA} \int_{\Omega_o}\int_{\Omega_i} {f_r(p, \omega_i, \omega_o)}\, {L_i(p, \omega_i)}\, {\cos \theta_i}\, {d\omega_i} \, {\cos \theta_o \, d \omega_o}\)
反射率\({\rho(p, \Omega_i, \Omega_o)}=\frac{d\Phi_o}{d\Phi_i}\),这样,我们就可以得到反射率的方程:
\({\rho(p, \Omega_i, \Omega_o)}=\frac{d\Phi_o}{d\Phi_i}=\frac{\int_{\Omega_o}\int_{\Omega_i} {f_r(p, \omega_i, \omega_o)}\, {L_i(p, \omega_i)}\, {\cos \theta_i}\, {d\omega_i} \, {\cos \theta_o \, d \omega_o}} {\int_{\Omega_i} L_i(p, \omega_i) \, \cos \theta_i \, \omega_i}\)
最后再附带上一张图作梳理总结
PBR Step by Step(三)BRDFs的更多相关文章
- 【转载】MDX Step by Step 读书笔记(三) - Understanding Tuples (理解元组)
1. 在 Analysis Service 分析服务中,Cube (多维数据集) 是以一个多维数据空间来呈现的.在Cube 中,每一个纬度的属性层次结构都形成了一个轴.沿着这个轴,在属性层次结构上的每 ...
- e2e 自动化集成测试 架构 实例 WebStorm Node.js Mocha WebDriverIO Selenium Step by step (三) SqlServer数据库的访问
上一篇文章“e2e 自动化集成测试 架构 京东 商品搜索 实例 WebStorm Node.js Mocha WebDriverIO Selenium Step by step 二 图片验证码的识别” ...
- Step by step Dynamics CRM 2011升级到Dynamics CRM 2013
原创地址:http://www.cnblogs.com/jfzhu/p/4018153.html 转载请注明出处 (一)检查Customizations 从2011升级到2013有一些legacy f ...
- SQL Server 维护计划实现数据库备份(Step by Step)(转)
SQL Server 维护计划实现数据库备份(Step by Step) 一.前言 SQL Server 备份和还原全攻略,里面包括了通过SSMS操作还原各种备份文件的图形指导,SQL Server ...
- EF框架step by step(6)—处理实体complex属性
上一篇的中介绍过了对于EF4.1框架中,实体的简单属性的处理 这一篇介绍一下Code First方法中,实体Complex属性的处理.Complex属性是将一个对象做为另一个对象的属性.映射到数据库中 ...
- EF框架step by step(7)—Code First DataAnnotations(1)
Data annotation特性是在.NET 3.5中引进的,给ASP.NET web应用中的类提供了一种添加验证的方式.Code First允许你使用代码来建立实体框架模型,同时允许用Data a ...
- 转载自~浮云比翼:Step by Step:Linux C多线程编程入门(基本API及多线程的同步与互斥)
Step by Step:Linux C多线程编程入门(基本API及多线程的同步与互斥) 介绍:什么是线程,线程的优点是什么 线程在Unix系统下,通常被称为轻量级的进程,线程虽然不是进程,但却可 ...
- e2e 自动化集成测试 架构 实例 WebStorm Node.js Mocha WebDriverIO Selenium Step by step (四) Q 反回调
上一篇文章“e2e 自动化集成测试 架构 京东 商品搜索 实例 WebStorm Node.js Mocha WebDriverIO Selenium Step by step (三) SqlServ ...
- [置顶] hdu2815 扩展Baby step,Giant step入门
题意:求满足a^x=b(mod n)的最小的整数x. 分析:很多地方写到n是素数的时候可以用Baby step,Giant step, 其实研究过Baby step,Giant step算法以后,你会 ...
- Struts2+Spring+Hibernate step by step 11 ssh拦截验证用户登录到集成
注意:该系列文章从教师王健写了一部分ssh集成开发指南 引言: 之前没有引入拦截器之前,我们使用Filter过滤器验证用户是否登录,在使用struts2之后,全然能够使用拦截器,验证用户是否已经登录, ...
随机推荐
- Spring整合JMS(四)——事务管理(转)
*注:别人那复制来的 Spring提供了一个JmsTransactionManager用于对JMS ConnectionFactory做事务管理.这将允许JMS应用利用Spring的事务管理特性.Jm ...
- dubbo 响应超时异常: com.alibaba.dubbo.remoting.TimeoutException: Waiting server-side response timeout.
因为dubbo默认的时间是500ms,超过这个时间它会重新请求服务层,最多尝试三次. 如果数据量比较大就不行了显示出来的异常为timeout. 在服务提供端设置timeout=1200000 并且加了 ...
- 分享一个彻底冻结对象的函数——来自阮一峰老师的《ECMAScript 6 入门》
var constantize = (obj) => { Object.freeze(obj); Object.keys(obj).forEach( (key, i) => { if ( ...
- 【不能继续浪啦】BZ做题记录[7.01~7.06]
距离上次提交..><居然已经过去一个半月了... 然后再去看看人家RXDoi.. 差距越来越大啦... 最后更新时间:7.06 19:06 [07.03 21:02]夏令营自修课逃逃真爽. ...
- HDU 1521 排列组合 (母函数)
题目链接 Problem Description 有n种物品,并且知道每种物品的数量.要求从中选出m件物品的排列数.例如有两种物品A,B,并且数量都是1,从中选2件物品,则排列有"AB&qu ...
- 微信小程序迁移到头条小程序工具
最近公司需要将微信小程序迁移到头条小程序,比较得知微信和头条小程序的写法类似,只有文件名称不同,相关的指令不同,以及头条在ttml绑定的数据不可使用function,于是就写了node脚本来实现这些重 ...
- JS设计模式——2.初识接口
什么是接口 接口提供了一种用以说明一个对象应该具有哪些方法的手段. 接口之利 1.接口具有自我描述性从而促进代码的重用 2.接口有助于稳定不同中的类之间的通信方式 3.测试和调试也变得更轻松 接口之弊 ...
- 大端小端转换,le32_to_cpu 和cpu_to_le32
字节序 http://oss.org.cn/kernel-book/ldd3/ch11s04.html 小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台 ...
- 码源中国.gitignore忽略文件配置
码源中国.gitignore忽略文件配置 ## Ignore Visual Studio temporary files, build results, and ## files generated ...
- PDO和mysqli对比
PHP中,如何选择PDO和mysqli呢?本文做个简单的比较 1)总的比较 PDO MYSQLI 数据库支持 12种不同的数据库支持 支持MYSQL API OOP OOP和过程 命名参数 支持 ...