Codeforces 834D The Bakery 【线段树优化DP】*
Codeforces 834D The Bakery
题目大意是给你一个长度为n的序列分成k段,每一段的贡献是这一段中不同的数的个数,求最大贡献
是第一次做线段树维护DP值的题
感觉还可以,虽然看了一下这题是用线段树维护DP值
然后说思路
有一个很显然的思路是这样的:
dpi,j表示前i个数分成j段的最大贡献
dpi,j=max(dpk,j−1+calc(k+1,i))
然后我们就可以对于每一层j用线段树维护起来
然后就非常愉快地发现dp[i][p]只会从dp[i−1][p−1]之前的DP值进行转移
所以可以发现每次可以错位建立线段树
然后现在考虑怎么维护calc(k+1,i)
我们可以把一段区间的贡献拆成每个点的贡献
显然位置i的数会对左端点位置在pre[i]+1~i的所有点产生加一的贡献(因为考虑的右端点在i)
所以每次判断一下区间加区间求和就好了
#include<bits/stdc++.h>
using namespace std;
#define N 350010
int a[N],b[N];
int dp[N][];
int las[N],pre[N];
int n,k;
namespace Segment_Tree{
#define MAXN N<<2
#define LD (t<<1)
#define RD (t<<1|1)
int maxv[MAXN],add[MAXN];
void pushup(int t){maxv[t]=max(maxv[LD],maxv[RD]);}
void pushdown(int t){
if(add[t]){
maxv[LD]+=add[t],add[LD]+=add[t];
maxv[RD]+=add[t],add[RD]+=add[t];
add[t]=;
}
}
void build(int t,int l,int r){
if(l>r)return;
add[t]=;
if(l==r){maxv[t]=a[l];return;}
int mid=(l+r)>>;
build(LD,l,mid);
build(RD,mid+,r);
pushup(t);
}
void modify(int t,int l,int r,int L,int R){
if(l>r)return;
if(L<=l&&r<=R){maxv[t]++;add[t]++;return;}
pushdown(t);
int mid=(l+r)>>;
if(R<=mid)modify(LD,l,mid,L,R);
else if(L>mid)modify(RD,mid+,r,L,R);
else{
modify(LD,l,mid,L,mid);
modify(RD,mid+,r,mid+,R);
}
pushup(t);
}
int query(int t,int l,int r,int L,int R){
if(l>r)return ;
if(L<=l&&r<=R)return maxv[t];
pushdown(t);
int mid=(l+r)>>;
int ans=;
if(R<=mid)ans=query(LD,l,mid,L,R);
else if(L>mid)ans=query(RD,mid+,r,L,R);
else ans=max(query(LD,l,mid,L,mid),query(RD,mid+,r,mid+,R));
pushup(t);
return ans;
}
};
int main(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)scanf("%d",&a[i]),b[i]=a[i];
sort(b+,b+n+);
int tot=unique(b+,b+n+)-b-;
for(int i=;i<=n;i++)a[i]=lower_bound(b+,b+tot+,a[i])-b;
for(int i=;i<=n;i++)pre[i]=las[a[i]],las[a[i]]=i;
for(int i=;i<=n;i++)dp[i][]=dp[i-][]+(int)(pre[i]==);
for(int j=;j<=k;j++){
for(int i=;i<=n;i++)a[i]=dp[i-][j-];
Segment_Tree::build(,,n);
for(int i=;i<=n;i++){
Segment_Tree::modify(,,n,pre[i]+,i);
dp[i][j]=Segment_Tree::query(,,n,,i);
}
}
printf("%d",dp[n][k]);
return ;
}
Codeforces 834D The Bakery 【线段树优化DP】*的更多相关文章
- CodeForces 834D The Bakery(线段树优化DP)
Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredient ...
- Codeforces Round #426 (Div. 2) D. The Bakery 线段树优化DP
D. The Bakery Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...
- D - The Bakery CodeForces - 834D 线段树优化dp···
D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...
- Codeforces Round #426 (Div. 2) D 线段树优化dp
D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...
- Codeforces 1603D - Artistic Partition(莫反+线段树优化 dp)
Codeforces 题面传送门 & 洛谷题面传送门 学 whk 时比较无聊开了道题做做发现是道神题( 介绍一种不太一样的做法,不观察出决策单调性也可以做. 首先一个很 trivial 的 o ...
- CF833B The Bakery 线段树,DP
CF833B The Bakery LG传送门 线段树优化DP. 其实这是很久以前就应该做了的一道题,由于颓废一直咕在那里,其实还是挺不错的一道题. 先考虑\(O(n^2k)\)做法:设\(f[i][ ...
- [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路)
[Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路) 题面 有n个空心物品,每个物品有外部体积\(out_i\)和内部体积\(in_i\),如果\(in_i& ...
- BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】
BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...
- [AGC011F] Train Service Planning [线段树优化dp+思维]
思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...
- 【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp
题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a varian ...
随机推荐
- GridControl 史上最全的资料(二)
GridControl详解(四)分组排序汇总 分组: 按时间分第一组: 按性别分第二组: 显示结果: 高级设置: 将所有组展开代码:gridView1.ExpandAllGroups(); 显示结果: ...
- vue2.0--vue-router路由
一.vue-router如何进行参数传递 1.name $route.name 通过在路由router/index.js中配置路由时定义的name属性来传递 ① 有一个页面components/he ...
- 一、nginx 安装
添加官方 yum 源 vim /etc/yum.repos.d/nginx.rep 输入以下内容(OS为你的系统,OSRELEASE 系统版本) [nginx] name=nginx repo bas ...
- spring mvc: 生成RSS源
spring mvc: 生成RSS源 准备: 从相同的maven存储库页面下载 Rome 库及其依赖项rome-utils,jdom和slf4j.和所需的依赖关系 <!-- rss源依赖 --& ...
- 理解OAuth 2.0授权
一.什么是OAuth 二.什么场景下会用到OAuth授权 三.OAuth 2.0中的4个成员 四.OAuth 2.0授权流程 五.OAuth 2.0授权模式 1. authorization c ...
- 十三 web爬虫讲解2—Scrapy框架爬虫—Scrapy爬取百度新闻,爬取Ajax动态生成的信息
crapy爬取百度新闻,爬取Ajax动态生成的信息,抓取百度新闻首页的新闻rul地址 有多网站,当你浏览器访问时看到的信息,在html源文件里却找不到,由得信息还是滚动条滚动到对应的位置后才显示信息, ...
- Mysql之select
SELECT {*|<字段列表>} [ FROM <表1>,<表2>,…,<表n> WHERE <表达式> GROUP BY ...
- 安装Linux环境
虚拟机:虚拟机(Virtual Machine),在计算机科学中的体系结构里,是指一种特殊的软件,他可以在计算机平台和终端用户之间建立一种环境,而终端用户则是基于这个软件所建立的环境来操作软件.在计算 ...
- 华硕笔记本开机直接进入bios解决方法
1.开机按esc键或F12,进入bios,打开BOOT标签,将Launch CSM改为Enabled,但此时的Launch CSM是Disabled,并且是灰色不可编辑状态. 2.按方向键切换到Sec ...
- tcpdump 使用实例
详细的文档见tcpdump高级过滤技巧 基本语法 ========过滤主机--------- 抓取所有经过 eth1,目的或源地址是 192.168.1.1 的网络数据# tcpdump -i eth ...