【统计学习】主成分分析PCA(Princple Component Analysis)从原理到实现


#encoding: UTF-8
'''
Created on 2016��12��14��
@author: YYH
'''
import numpy as np
from array import array
# 自己实现参考
# http://blog.csdn.net/u012162613/article/details/42177327
# 传入的数据格式: array
# 每一行代表一个样本
# 每一列代表一个唯度的信息
#数据中心化,使得各个维度的信息均为0
def meanshift(dataArr):
mean = np.mean(dataArr,axis=0)#对每一列求均值
newData = dataArr-mean
return newData,mean
def zeroData(dataArr,mean):
newData = dataArr-mean
return newData
class PCA:
def __init__(self, n_components=1,percentage=0.99):
self.dstDim = n_components
self.reservePercentage = percentage
def __del__(self):
pass
def fit(self,dataArr):
zeroMeanData,meanVal = meanshift(dataArr)
self.meanVal = meanVal#保存数据中心
# 求协方差矩阵,rowvar = 0:一行代表一个样本
cov = np.cov(zeroMeanData,rowvar=0)
#求特征值和特征向量,特征向量是按列放的,即一列代表一个特征向量
eigVals,eigVector =np.linalg.eig(cov)
eigValsIndice = np.argsort(eigVals)#从小到大排列
n_eigValsIndice = eigValsIndice[-1:-(self.dstDim+1):-1] #最大的n个特征的下标
n_eigVect = eigVector[:,n_eigValsIndice]#最大的n个特征值对应的特征向量
n_eigVect = np.matrix(n_eigVect)
self.n_eigVect = n_eigVect #保存特征向量
def fit_transform(self,dataArr):
zeroMeanData,meanVal = meanshift(dataArr)
self.meanVal = meanVal#保存数据中心
# 求协方差矩阵,rowvar = 0:一行代表一个样本
cov = np.cov(zeroMeanData,rowvar=0)
#求特征值和特征向量,特征向量是按列放的,即一列代表一个特征向量
eigVals,eigVector =np.linalg.eig(cov)
eigValsIndice = np.argsort(eigVals)#从小到大排列
n_eigValsIndice = eigValsIndice[-1:-(self.dstDim+1):-1] #最大的n个特征的下标
n_eigVect = eigVector[:,n_eigValsIndice]#最大的n个特征值对应的特征向量
zeroMeanData = np.matrix(zeroMeanData)
n_eigVect = np.matrix(n_eigVect)
self.n_eigVect = n_eigVect #保存特征向量
lowDData = zeroMeanData*n_eigVect #低维特征空间的数据
# reConData = (lowDData*n_eigVect.T)+meanVal #重构数据
return lowDData
def transform(self,dataArr):
zeroMeanData = zeroData(dataArr,self.meanVal)
zeroMeanData = np.matrix(zeroMeanData)
lowDData = zeroMeanData*self.n_eigVect #低维特征空间的数据
# reConData = (lowDData*n_eigVect.T)+meanVal #重构数据
return lowDData
【代码验证】
在做手写数字识别时,我分别使用了sklearn的PCA,和自己整理的PCA,达到的准确度都到了96%左右。
在PCA降维后的数据来看,可能在特征向量上方向不同,导致部分列跟sklearn的符号相反
时间上,可能自己整理实现的PC A现在耗时短点,毕竟目前是比较简单的PC A


【统计学习】主成分分析PCA(Princple Component Analysis)从原理到实现的更多相关文章
- R: 主成分分析 ~ PCA(Principal Component Analysis)
本文摘自:http://www.cnblogs.com/longzhongren/p/4300593.html 以表感谢. 综述: 主成分分析 因子分析 典型相关分析,三种方法的共同点主要是用来对数据 ...
- 用scikit-learn学习主成分分析(PCA)
在主成分分析(PCA)原理总结中,我们对主成分分析(以下简称PCA)的原理做了总结,下面我们就总结下如何使用scikit-learn工具来进行PCA降维. 1. scikit-learn PCA类介绍 ...
- 解释一下核主成分分析(Kernel Principal Component Analysis, KPCA)的公式推导过程(转载)
KPCA,中文名称”核主成分分析“,是对PCA算法的非线性扩展,言外之意,PCA是线性的,其对于非线性数据往往显得无能为力,例如,不同人之间的人脸图像,肯定存在非线性关系,自己做的基于ORL数据集的实 ...
- 核主成分分析(Kernel Principal Component Analysis, KPCA)的公式推导过程
KPCA,中文名称”核主成分分析“,是对PCA算法的非线性扩展,言外之意,PCA是线性的,其对于非线性数据往往显得无能为力,例如,不同人之间的人脸图像,肯定存在非线性关系,自己做的基于ORL数据集的实 ...
- PCA(Principal Component Analysis)笔记
PCA是机器学习中recognition中的传统方法,今天下午遇到了,梳理记一下 提出背景: 二维空间里,2个相近的样本,有更大概率具有相同的属性,但是在高维空间里,由于样本在高维空间里,呈现越来越稀 ...
- 主成分分析(principal components analysis, PCA)——无监督学习
降维的两种方式: (1)特征选择(feature selection),通过变量选择来缩减维数. (2)特征提取(feature extraction),通过线性或非线性变换(投影)来生成缩减集(复合 ...
- 《principal component analysis based cataract grading and classification》学习笔记
Abstract A cataract is lens opacification caused by protein denaturation which leads to a decrease i ...
- 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA
本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...
- 【机器学习】--主成分分析PCA降维从初识到应用
一.前述 主成分分析(Principal Component Analysis,PCA), 是一种统计方法.通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分. ...
随机推荐
- Linux系统启动过程
1. 从BIOS到KERNEL BIOS自检->MBR(GRUB)->KERNEL->KERNEL自解压->内核初始化->内核启动 BIOS自检 当电脑开机的时候,电脑会 ...
- Linux 平台GCC使用小结
gcc -Wall [-I search_headfile_path] [-L search_lib_path] sourcefile -lNAME -o exe-name -Wall选项打开所有最常 ...
- 【bzoj1231】[Usaco2008 Nov]mixup2 混乱的奶牛
题目描述 混乱的奶牛[Don Piele, 2007]Farmer John的N(4 <= N <= 16)头奶牛中的每一头都有一个唯一的编号S_i (1 <= S_i <= ...
- Thinkphp 3.2.2 验证码check_verify方法,只能验证一次
问题: Thinkphp 3.2.2 验证码check_verify方法,只能验证一次. function check_verify($code, $id = ''){ $verify = \Thin ...
- Maven的Missing artifact问题解决
Maven的Missing artifact问题解决 今天在创建一个新的Maven项目时,在其中添加了很多依赖.刚开始为了避免错误就每添加一次,保存一下,Eclipse就会下载相应的包.最后为了 ...
- android onCreate中获取view宽高为0的解决方法
view.post(runnable) 通过post可以将一个runnable投递到消息队列的尾部,然后等待UI线程Looper调用此runnable的时候,view也已经初始化好了. view.po ...
- Qt - 错误总结 - 在自定义类头文件中添加Q_OBJECT 编译时报错(undefined reference to ‘vtable for xxThread)
错误提示:在添加的QThread子类头文件添加Q_OBJECT时,编译程序,出现"undefined reference to 'vtable for xxThread'"错误提示 ...
- 【转】实现ViewPager懒加载的三种方法
方法一 在Fragment可见时请求数据.此方案仍预加载了前后的页面,但是没有请求数据,只有进入到当前Framgent时才请求数据. 优点:实现了数据的懒加载缺点:一次仍是三个Framgment对象, ...
- axure rp8.0 序列号,亲测可以用
转载自:https://zhidao.baidu.com/question/428326076480233092.html aaa 2GQrt5XHYY7SBK/4b22Gm4Dh8alaR0/0k3 ...
- css 上下滚动效果
<html> <head> <style> .scroll{ overflow:hidden; width:100%; } .scrollout{ height:2 ...