洛谷传送门

FJOI 日常原题 $2333$(似乎还不如 SDOI2012 任务安排 $2333$)

显然考虑 $dp$,这个是经典的把未来的代价先计算的 $dp$,然后才是斜率优化

一开始想状态时一直有一个时间维,然后就没法优化,考虑如何消掉这个时间维

可以发现,时间只和当前处理到的任务编号,和之前启动机器的次数(分的段数)有关

然后就可以设 $f[i][j]$ 表示前 $i$ 个任务,分了 $j$ 段,然后就可以 $O(n^3)$ $dp$ 了(然鹅此时并不能斜率优化...)

考虑怎么优化,发现每次分的时候都要产生 $s$ 的时间,而这 $s$ 的时间不仅仅是加在 $j$ 到 $i$ 这一段

它是加在 $j$ 到 $n$ 的,所以考虑把到 $n$ 的代价也计算进去(把这一段的代价先提前计算)

这样之后转移的时候就不用考虑因为分段而多出来的时间了

设 $st[i]$ 表示前 $i$ 个任务的完成时间和,$sc[i]$ 表示前 $i$ 个任务的费用和

设 $f[i]$ 表示完成前 $i$ 个任务分了若干段的最小代价,那么可以得出 $dp$ 方程:

$f[i]=\sum_{j=1}^{i-1}min(\ f[j]+(sc[n]-sc[j])*S+st[i]*(sc[i]-sc[j])\ )$

然后复杂度是 $n^2$...

发现好像可以斜率优化了,把式子拆开:

$f[i]=f[j]+sc[n]*S-sc[j]*S+st[i]*sc[i]-st[i]*sc[j]$

$f[i]=f[j]-(st[i]+S)sc[j]+sc[n]S+st[i]sc[i]$

$(st[i]+S)sc[j]+f[i]-st[i]sc[i]+sc[n]S=f[j]$

那么 $k=st[i]+S,x=sc[j],b=f[i]-st[i]sc[i]+sc[n]S,y=f[j]$

因为 $k,x$ 单调,所以直接斜率优化...(SDOI那题好像因为 $t[i]$ 可以小于 $0$ 所以要上 $CDQ$ ?)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
typedef long long ll;
typedef double db;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=2e6+;
int n,S;
int st[N],sc[N];
ll f[N];
inline ll X(int i) { return sc[i]; }
inline ll Y(int i) { return f[i]; }
inline db slope(int i,int j) { return 1.0*(Y(i)-Y(j))/(X(i)-X(j)); }
int Q[N],l=,r=;
int main()
{
n=read(),S=read();
for(int i=;i<=n;i++) st[i]=st[i-]+read(),sc[i]=sc[i-]+read();
for(int i=;i<=n;i++)
{
while( l<r && 1.0*(st[i]+S)>=slope(Q[l],Q[l+]) ) l++;
int j=Q[l];
f[i]=f[j]+(sc[n]-sc[j])*S+st[i]*(sc[i]-sc[j]);
while( l<r && slope(Q[r-],i)<=slope(Q[r-],Q[r]) ) r--;
Q[++r]=i;
}
printf("%lld",f[n]);
return ;
}

luogu P2365 任务安排(FJOI2019 batch)的更多相关文章

  1. P2365 任务安排 / [FJOI2019]batch(斜率优化dp)

    P2365 任务安排 batch:$n<=10000$ 斜率优化入门题 $n^{3}$的dp轻松写出 但是枚举这个分成多少段很不方便 我们利用费用提前的思想,提前把这个烦人的$S$在后面的贡献先 ...

  2. luogu P2365 任务安排

    嘟嘟嘟 如果常规dp,\(dp[i][j]\)表示前\(i\)个任务分\(j\)组,得到 \[dp[i][j] = min _ {k = 0} ^ {i - 1} (dp[k][j - 1] + (s ...

  3. 2018.07.09 洛谷P2365 任务安排(线性dp)

    P2365 任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间 ...

  4. [Luogu 1160] 队列安排

    Luogu 1160 队列安排 链表H2O H2O H2O模板. 太久不写链表,忘干净了,竟调了半个晚上. 保留备用. #include <cstdio> #include <cst ...

  5. luogu P1160 队列安排

    二次联通门 :luogu P1160 队列安排 /* luogu P1160 队列安排 链表 手动模拟一下就好了... */ #include <cstdio> #define Max 5 ...

  6. P2365 任务安排 batch 动态规划

    batch ★☆   输入文件:batch.in   输出文件:batch.out   简单对比时间限制:1 s   内存限制:128 MB 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不 ...

  7. tyvj1098[luogu 2365]任务安排 batch

    题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti.在每批任务开始 ...

  8. [洛谷P2365] 任务安排

    洛谷题目链接:任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时 ...

  9. 【luogu P2071 座位安排】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2071#sub 邻接表 + 匈牙利 把之前的邻接矩阵匈牙利变成邻接表 要不然存不下... code: #inc ...

随机推荐

  1. [C++] Pen questions & linux cmd

    1.宏替换,完全展开替换,注意带来副作用 #include <stdio.h>#define 打印语句 printf(“hello”); Void main(void) { If (1) ...

  2. nginx在windows平台下的使用笔记

    nginx主要提供反向代理及负载均衡的能力,重定向报文代理及报文数据替换也是常用功能.(参考https://www.cnblogs.com/fanzhidongyzby/p/5194895.html) ...

  3. 迁移ORACLE数据库文件到ASM

    迁移数据文件到ASM 数据库一致性情况下迁移:将数据库启动到mount状态,生成rman copy 语句,然后在rman中执行: SQL> startup mount SQL> selec ...

  4. [GO]使用go语言实现比特币的工作量证明

    之前的博文已经实现了区块连的基本的工作原理,但在比特币系统中有一个很重要的概念:工作量证明POW,在比特币系统中它的作用就是在十分钟左右的时间内只有一个有能够记帐并得到奖励 在之前的博文中,区块的哈希 ...

  5. VS2012用正则表达式统计行数

    使用正则表达式: b*[^:b#/]+.*$

  6. UDP问题

    这两天使用C#的UdpClient,本机的服务是采用MFC的socket发的,用C#做客户端,然后客户端启动时,出现该条错误信息 ==通常每个套接字地址(协议/网络地址/端口)只允许使用一次. 笔记的 ...

  7. C++11学习笔记之三lamda表达式,std::function, std::bind

    //lamda //first lamda [] {}; // second lamda []() //or no need () when paramater is null { std::cout ...

  8. eclipse插件svn图标详细含义

    链接:http://pan.baidu.com/s/1qYSFfTq 密码:ez8p

  9. [Selenium With C#基础教程] Lesson-04 按钮

    作者:Surpassme 来源:http://www.jianshu.com/p/83d7416c4b7d 声明:本文为原创文章,如需转载请在文章页面明显位置给出原文链接,谢谢. Button通常有两 ...

  10. Linq实战 之 Linq to Sql及Entity Framework操作详解

    Linq实战 之 Linq to Sql及Entity Framework操作详解 一:linq to db的框架 1. linq to sql 2. linq to ado.net entity f ...