[Luogu-CF1097D]

给定 \(n,k\)一共会进行 \(k\) 次操作 , 每次操作会把 \(n\) 等概率的变成 \(n\) 的某个约数

求操作 \(k\) 次后 \(n\) 的期望是多少

题解

\(f[i][j]\) 表示以某质数的 \(i\) 次方经过 \(j\) 次操作后的结果

发现答案是积性的 , 质因数分解后转移

\(f[n][k]∗f[m][k]=f[nm][k] (gcd(n,m)=1)\)

对于\(f[i][j]\)的转移 :

\(f[i][j]=\frac{1}{i+1}\sum_{k=0}^{i}f[k][j-1]\)

大胆猜测积性的性质 , 转化为质因数分解后求解

其实肯定要写出最基础的暴力才能发现一些性质 , 所以不管是什么题都要先把暴力打了再说 ; 积性函数这种猜想还是要打表证明一下

记忆化是一个神奇的东西

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#define inf 0x3f3f3f3f
#define int long long
#define p 1000000007
using namespace std; int dp[62][10002]; inline int power(int a,int t);
int inv(int n);
int solve(int a,int i,int j); signed main(){
int n,k,t,ans = 1;
scanf("%lld%lld",&n,&k);
for(int i=2;i*i<=n;++i){
if(n%i!=0) continue; //不是因数,跳过
t = 0;
while(n%i==0){
++t;
n /= i; //找到质因数,算幂次
}
memset(dp,0,sizeof(dp));
ans = (ans*solve(i,t,k))%p;
}
memset(dp,0,sizeof(dp));
if(n>1) ans = (ans*solve(n,1,k))%p; //最后可能剩下n>1,需要多算一遍
printf("%lld",ans);
return 0;
} inline int power(int a,int t){
int res = 1;
while(t){
if(t&1) res = res*a%p;
a = a*a%p;
t >>= 1;
}
return res;
} int inv(int n){
return power(n,1000000005);
} int solve(int a,int i,int j){
if(i==0){
dp[i][j] = 1; //p^0为1,经过多少次操作还是1
return 1;
}
if(j==0){
//0次操作的情况,即为原数
if(dp[i][j]==0) dp[i][j]=power(a,i);
return dp[i][j];
}
int ans = 0;
for(int k=0;k<=i;++k){
//套用上面的式子
if(dp[k][j-1]==0) dp[k][j-1] = solve(a,k,j-1);
ans = (ans+dp[k][j-1])%p;
}
return ans*inv(i+1)%p;
}

CF1097D Makoto and a Blackboard(期望)的更多相关文章

  1. cf1097D. Makoto and a Blackboard(期望dp)

    题意 题目链接 Sol 首先考虑当\(n = p^x\),其中\(p\)是质数,显然它的因子只有\(1, p, p^2, \dots p^x\)(最多logn个) 那么可以直接dp, 设\(f[i][ ...

  2. CF1097D Makoto and a Blackboard(期望)

    link 题目大意:给您一个数 n, 每次从n的所有约数(包含1.n)中等概率选出一个约数替换n,重复操作k次,求最后结果期望值%1e9+7. 题解:考虑暴力,我们设f(n,k)代表答案,则有f(n, ...

  3. CF1097D Makoto and a Blackboard

    题目地址:CF1097D Makoto and a Blackboard 首先考虑 \(n=p^c\) ( \(p\) 为质数)的情况,显然DP: 令 \(f_{i,j}\) 为第 \(i\) 次替换 ...

  4. CF1097D Makoto and a Blackboard 积性函数、概率期望、DP

    传送门 比赛秒写完ABC结果不会D--最后C还fst了qwq 首先可以想到一个约数个数\(^2\)乘上\(K\)的暴力DP,但是显然会被卡 在\(10^{15}\)范围内因数最多的数是\(978217 ...

  5. CF1097D Makoto and a Blackboard 质因数分解 DP

    Hello 2019 D 题意: 给定一个n,每次随机把n换成它的因数,问经过k次操作,最终的结果的期望. 思路: 一个数可以表示为质数的幂次的积.所以对于这个数,我们可以分别讨论他的质因子的情况. ...

  6. D Makoto and a Blackboard

    Makoto and a Blackboard time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  7. Codeforces1097D. Makoto and a Blackboard(数论+dp+概率期望)

    题目链接:传送门 题目大意: 给出一个整数n写在黑板上,每次操作会将黑板上的数(初始值为n)等概率随机替换成它的因子. 问k次操作之后,留在黑板上的数的期望. 要求结果对109+7取模,若结果不是整数 ...

  8. 【DP】【CF1097D】 Makoto and a Blackboard

    更好的阅读体验 Description 给定一个数 \(n\),对它进行 \(k\) 次操作,每次将当前的数改为自己的因数,包括 \(1\) 和自己.写出变成所有因数的概率是相等的.求 \(k\) 次 ...

  9. codeforces1097D Makoto and a Blackboard 数学+期望dp

    题目传送门 题目大意: 给出一个n和k,每次操作可以把n等概率的变成自己的某一个因数,(6可以变成1,2,3,6,并且概率相等),问经过k次操作后,期望是多少? 思路:数学和期望dp  好题好题!! ...

随机推荐

  1. code1043 方格取数

    第一次走用dfs枚举每种情况,第二次走用dp求剩下的最大值 设一个点集q用来保存有价值的点,排序,在最后加一个终点:x=m+1,y=m+1,v=0  //m是矩阵长宽 因为v=0的点是没有意义的,所以 ...

  2. Linux Mint 17使用配置

    => 调亮度: 方法一: 每次开机或注销登录之后需要重新设置 > /sys/class/backlight/intel_backlight/brightness #根据自己需要调值,如20 ...

  3. ubuntu 16.04启用root和ssh登录

    1.设置用户密码 sudo passwd root 2.vim /usr/share/lightdm/lightdm.conf.d/50-ubuntu.conf 末尾添加:greeter-show-m ...

  4. mvc中使用Hangfire处理后台任务

    考虑下如下代码,在数据保存后,需要发送邮件,发送邮件是个耗时的工作. 我们的目的是,数据保存成功后,就可以返回响应了,发送邮件不重要,不需要等待邮件发送成功 [HttpPost] public Act ...

  5. 利用predis操作redis方法大全

    predis是PHP连接Redis的操作库,由于它完全使用php编写,大量使用命名空间以及闭包等功能,只支持php5.3以上版本,故实测性能一般,每秒25000次读写. 将session数据存放到re ...

  6. firefox ubuntu 中文包

    sudo apt-get install firefox-locale-zh-hans

  7. up6-自定义文件存储路径

    在up6.2中有两种保存模式,一种是md5一种是uuid. md5由PathMd5Builder生成存储路径.md5主要提供给文件使用,可在服务器端保存唯一的文件,有效避免重复文件. uuid由Pat ...

  8. Android 文件存放路径【转】

    对于应用携带的静态数据,可以放置在应用的assets目录或者res,raw目录下.对于assets目录下的静态数据,存在当文件最大支持1MB的局限,读取方式如下: 1 InputStream is = ...

  9. 12306GT多线程、分流免费抢票工具使用心德

    大事记背景 我相信很多远游他乡的朋友每逢佳节都会遇到一个难题,就是购票难,这个难题有多难呢?经常在12306官网购票的小伙伴应该知道每个地方的放票时间是不一样的,但是逢年过节的那几天即使你在放票几分钟 ...

  10. Ubuntu : 解决更新时出现 Unable to locate package update

    当用apt-get更新软件包时常出现错误提示Unable to locate package update, 尤其是在ubuntu server上,解决方法是:     先更新apt-get      ...