[Luogu-CF1097D]

给定 \(n,k\)一共会进行 \(k\) 次操作 , 每次操作会把 \(n\) 等概率的变成 \(n\) 的某个约数

求操作 \(k\) 次后 \(n\) 的期望是多少

题解

\(f[i][j]\) 表示以某质数的 \(i\) 次方经过 \(j\) 次操作后的结果

发现答案是积性的 , 质因数分解后转移

\(f[n][k]∗f[m][k]=f[nm][k] (gcd(n,m)=1)\)

对于\(f[i][j]\)的转移 :

\(f[i][j]=\frac{1}{i+1}\sum_{k=0}^{i}f[k][j-1]\)

大胆猜测积性的性质 , 转化为质因数分解后求解

其实肯定要写出最基础的暴力才能发现一些性质 , 所以不管是什么题都要先把暴力打了再说 ; 积性函数这种猜想还是要打表证明一下

记忆化是一个神奇的东西

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#define inf 0x3f3f3f3f
#define int long long
#define p 1000000007
using namespace std; int dp[62][10002]; inline int power(int a,int t);
int inv(int n);
int solve(int a,int i,int j); signed main(){
int n,k,t,ans = 1;
scanf("%lld%lld",&n,&k);
for(int i=2;i*i<=n;++i){
if(n%i!=0) continue; //不是因数,跳过
t = 0;
while(n%i==0){
++t;
n /= i; //找到质因数,算幂次
}
memset(dp,0,sizeof(dp));
ans = (ans*solve(i,t,k))%p;
}
memset(dp,0,sizeof(dp));
if(n>1) ans = (ans*solve(n,1,k))%p; //最后可能剩下n>1,需要多算一遍
printf("%lld",ans);
return 0;
} inline int power(int a,int t){
int res = 1;
while(t){
if(t&1) res = res*a%p;
a = a*a%p;
t >>= 1;
}
return res;
} int inv(int n){
return power(n,1000000005);
} int solve(int a,int i,int j){
if(i==0){
dp[i][j] = 1; //p^0为1,经过多少次操作还是1
return 1;
}
if(j==0){
//0次操作的情况,即为原数
if(dp[i][j]==0) dp[i][j]=power(a,i);
return dp[i][j];
}
int ans = 0;
for(int k=0;k<=i;++k){
//套用上面的式子
if(dp[k][j-1]==0) dp[k][j-1] = solve(a,k,j-1);
ans = (ans+dp[k][j-1])%p;
}
return ans*inv(i+1)%p;
}

CF1097D Makoto and a Blackboard(期望)的更多相关文章

  1. cf1097D. Makoto and a Blackboard(期望dp)

    题意 题目链接 Sol 首先考虑当\(n = p^x\),其中\(p\)是质数,显然它的因子只有\(1, p, p^2, \dots p^x\)(最多logn个) 那么可以直接dp, 设\(f[i][ ...

  2. CF1097D Makoto and a Blackboard(期望)

    link 题目大意:给您一个数 n, 每次从n的所有约数(包含1.n)中等概率选出一个约数替换n,重复操作k次,求最后结果期望值%1e9+7. 题解:考虑暴力,我们设f(n,k)代表答案,则有f(n, ...

  3. CF1097D Makoto and a Blackboard

    题目地址:CF1097D Makoto and a Blackboard 首先考虑 \(n=p^c\) ( \(p\) 为质数)的情况,显然DP: 令 \(f_{i,j}\) 为第 \(i\) 次替换 ...

  4. CF1097D Makoto and a Blackboard 积性函数、概率期望、DP

    传送门 比赛秒写完ABC结果不会D--最后C还fst了qwq 首先可以想到一个约数个数\(^2\)乘上\(K\)的暴力DP,但是显然会被卡 在\(10^{15}\)范围内因数最多的数是\(978217 ...

  5. CF1097D Makoto and a Blackboard 质因数分解 DP

    Hello 2019 D 题意: 给定一个n,每次随机把n换成它的因数,问经过k次操作,最终的结果的期望. 思路: 一个数可以表示为质数的幂次的积.所以对于这个数,我们可以分别讨论他的质因子的情况. ...

  6. D Makoto and a Blackboard

    Makoto and a Blackboard time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  7. Codeforces1097D. Makoto and a Blackboard(数论+dp+概率期望)

    题目链接:传送门 题目大意: 给出一个整数n写在黑板上,每次操作会将黑板上的数(初始值为n)等概率随机替换成它的因子. 问k次操作之后,留在黑板上的数的期望. 要求结果对109+7取模,若结果不是整数 ...

  8. 【DP】【CF1097D】 Makoto and a Blackboard

    更好的阅读体验 Description 给定一个数 \(n\),对它进行 \(k\) 次操作,每次将当前的数改为自己的因数,包括 \(1\) 和自己.写出变成所有因数的概率是相等的.求 \(k\) 次 ...

  9. codeforces1097D Makoto and a Blackboard 数学+期望dp

    题目传送门 题目大意: 给出一个n和k,每次操作可以把n等概率的变成自己的某一个因数,(6可以变成1,2,3,6,并且概率相等),问经过k次操作后,期望是多少? 思路:数学和期望dp  好题好题!! ...

随机推荐

  1. Jedis连接Redis三种模式

    这里说的三种工作模式是指: 1.单机模式 2.分片模式 3.集群模式(since 3.0) 说明图详见以下: 使用单机模式连接: private String addr="192.168.1 ...

  2. Boost线程详解

    一.创建一个线程 创建线程 boost::thread myThread(threadFun); 需要注意的是:参数可以是函数对象或者函数指针.并且这个函数无参数,并返回void类型. 当一个thre ...

  3. code1085 数字游戏

    划分dp 把环变链(读入4 3 -1 2变成4 3 -1 2 4 3 -1 2) 设dp[i][j][k]为把i~j分成k份,各部分内的数字相加,相加所得的k个结果对10取模后再相乘,最终得到的一个数 ...

  4. Python之FTP传输-乾颐堂

    访问FTP,无非两件事情:upload和download,最近在项目中需要从ftp下载大量文件,然后我就试着去实验自己的ftp操作类,如下(PS:此段有问题,别复制使用,可以参考去试验自己的ftp类! ...

  5. mosquitto配置通过ssl通信

    mosquitto配置通过ssl通信 摘自https://www.cnblogs.com/stin/p/9258211.html 注意项: For openssl >= 1.0.1 the va ...

  6. springMVC框架集成tiles模板

    将tiles模板集成到springMVC框架下,大概流程如下: 1.在配置文件中加入tiles支持 我的servlet配置文件名为spring-mvc.xml.具体配置如下: <?xml ver ...

  7. [GO]文件的收发服务器

    发送方 package main import ( "fmt" "os" "net" "io" ) //发送文件内容 f ...

  8. 编写高质量代码改善C#程序的157个建议——建议129:泛型类型参数要以T作为前缀

    建议129:泛型类型参数要以T作为前缀 作为一种约定,泛型类型的参数要以T作为前缀.如委托声明: Action<T1,T2> 其中,泛型类型参数名不应该处理成: Action<Arg ...

  9. Understanding sun.misc.Unsafe

    转自: https://dzone.com/articles/understanding-sunmiscunsafe The biggest competitor to the Java virtua ...

  10. top命令查看进程列表

    top命令查看进程列表 top命令是linux下常用的性能分析工具,能实时显示系统中各个进程的资源占用状况.和win的资源管理器类似.top是一个动态显示过程,即可以通过用户按键来不断刷新当前状态,如 ...