只出现一次的数字 [ LeetCode ]
给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。
说明:
你的算法应该具有线性时间复杂度。 你可以不使用额外空间来实现吗?
示例 1:
输入: [2,2,1]
输出: 1
示例 2:
输入: [4,1,2,1,2]
输出: 4
以上是原题
OK,先找出题目中的重点要求:
1、线性时间复杂度:要求我们的代码时间复杂度最高为O(n),不能有嵌套循环等。
2、不使用额外空间:要求空间复杂度最高为O(1)。
除此之外,还有重要的信息:
- 除了某个元素只出现一次以外,其余每个元素均出现两次。
这个条件非常关键,一开始自己审题不清楚没注意到均出现两次这个关键点,按照其他元素出现多次的情况处理了,这样导致思路受限很多。
开始解题:
方法一(比较法):
思路:先对数组进行排序,然后对 nums[i] 和 nums[i + 1]进行比较,如相等,i += 2,继续下一组比较,直到取到不相等的一组。
注意:首先这个数组的长度肯定是奇数(目标数字只出现一次,其他所有数字出现两次),所以如果上述步骤没有找到不相等的一组数,那么肯定是数组的最后一个数字是单独出现的。
代码如下:
public static int singleNumber(int[] nums) {
Arrays.sort(nums); // 排序数组
for (int i = 0; i < nums.length - 1; i += 2) {
// 找到不相等的一组,直接返回
if (nums[i] != nums[i + 1]) {
return nums[i];
}
}
// 如果没有找到不相等的一组数据,直接返回数组的最后一个数字
return nums[nums.length - 1];
}
方法二(去重法):
思路:利用HashSet的特性,删除重复的数组元素,最后剩下一个单独的元素,返回即可。
直接上代码:
public static int singleNumber(int[] nums) {
Set<Integer> set = new HashSet<>();
for (int i = 0; i < nums.length; i++) {
if (!set.add(nums[i])) { // add成功返回true,如果set中已有相同数字,则add方法会返回false
set.remove(nums[i]); // 删除重复出现的数字
}
}
return set.iterator().next(); }
方法三(求差法):
思路:先对数组排序,显而易见的,单独出现一次的数据必然是出现在数组下标为偶数的位置(下标从0开始),那么所有奇数下标的元素之和减去偶数下标的元素之和,就是需要求得的结果。
代码如下:
public static int singleNumber(int[] nums) {
int num = 0;
Arrays.sort(nums);
for (int i = 0; i < nums.length; i++) {
// 偶数下标位置 num += nums[i],奇数下标位置 num -= nums[i]
num = i % 2 == 0 ? num + nums[i] : num - nums[i];
}
return num;
}
方法四(异或法):
思路:根据异或运算的特点,相同的数字经过异或运算后结果为0,除单独出现一次的数字外,其他数字都是出现两次的,那么这些数字经过异或运算后结果一定是0。而任何数字与0进行异或运算都是该数字本身。所以对数组所有元素进行异或运算,运算结果就是题目的答案。
上代码:
public static int singleNumber(int[] nums) {
int num = 0;
for (int i = 0; i < nums.length; i++) {
num = num ^ nums[i];
}
return num;
}
总结:
其实严格来讲,只有第四种方式是题目想要的解法,其他三种方法都是有瑕疵的。
方法一、方法三都用到了Arrays.sort(int[] a)的方法,我们先来看JDK提供的数组排序方法:
public static void sort(int[] a) {
DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
}
调用了DualPivotQuicksort类的静态方法:
/**
* Sorts the specified range of the array using the given
* workspace array slice if possible for merging
*
* @param a the array to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
* @param work a workspace array (slice)
* @param workBase origin of usable space in work array
* @param workLen usable size of work array
*/
static void sort(int[] a, int left, int right,
int[] work, int workBase, int workLen) {
// Use Quicksort on small arrays
if (right - left < QUICKSORT_THRESHOLD) {
sort(a, left, right, true);
return;
} /*
* Index run[i] is the start of i-th run
* (ascending or descending sequence).
*/
int[] run = new int[MAX_RUN_COUNT + 1];
int count = 0; run[0] = left; // Check if the array is nearly sorted
for (int k = left; k < right; run[count] = k) {
if (a[k] < a[k + 1]) { // ascending
while (++k <= right && a[k - 1] <= a[k]);
} else if (a[k] > a[k + 1]) { // descending
while (++k <= right && a[k - 1] >= a[k]);
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
}
} else { // equal
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
if (--m == 0) {
sort(a, left, right, true);
return;
}
}
} /*
* The array is not highly structured,
* use Quicksort instead of merge sort.
*/
if (++count == MAX_RUN_COUNT) {
sort(a, left, right, true);
return;
}
} // Check special cases
// Implementation note: variable "right" is increased by 1.
if (run[count] == right++) { // The last run contains one element
run[++count] = right;
} else if (count == 1) { // The array is already sorted
return;
} // Determine alternation base for merge
byte odd = 0;
for (int n = 1; (n <<= 1) < count; odd ^= 1); // Use or create temporary array b for merging
int[] b; // temp array; alternates with a
int ao, bo; // array offsets from 'left'
int blen = right - left; // space needed for b
if (work == null || workLen < blen || workBase + blen > work.length) {
work = new int[blen];
workBase = 0;
}
if (odd == 0) {
System.arraycopy(a, left, work, workBase, blen);
b = a;
bo = 0;
a = work;
ao = workBase - left;
} else {
b = work;
ao = 0;
bo = workBase - left;
} // Merging
for (int last; count > 1; count = last) {
for (int k = (last = 0) + 2; k <= count; k += 2) {
int hi = run[k], mi = run[k - 1];
for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
b[i + bo] = a[p++ + ao];
} else {
b[i + bo] = a[q++ + ao];
}
}
run[++last] = hi;
}
if ((count & 1) != 0) {
for (int i = right, lo = run[count - 1]; --i >= lo;
b[i + bo] = a[i + ao]
);
run[++last] = right;
}
int[] t = a; a = b; b = t;
int o = ao; ao = bo; bo = o;
}
}
代码较长,想看的同学点开看一下,可以发现这个方法的时间复杂度是O(n3),不符合题目的要求线性时间复杂度。
方法二呢,是利用了HashSet集合不可重复的特性,同样我们来看HashSet的add方法:
/**
* Adds the specified element to this set if it is not already present.
* More formally, adds the specified element <tt>e</tt> to this set if
* this set contains no element <tt>e2</tt> such that
* <tt>(e==null ? e2==null : e.equals(e2))</tt>.
* If this set already contains the element, the call leaves the set
* unchanged and returns <tt>false</tt>.
*
* @param e element to be added to this set
* @return <tt>true</tt> if this set did not already contain the specified
* element
*/
public boolean add(E e) {
return map.put(e, PRESENT)==null;
}
其实HashSet的底层是通过HashMap来实现的,HashSet中的元素都是HashMap中的key,再来看HashMap的put方法:
/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
* (A <tt>null</tt> return can also indicate that the map
* previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
} /**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
请注意:上面 putVal 方法中,调用的 resize() 、 putTreeVal() 等方法本身也是O(n2)的时间复杂度。不符合题目要求的线性时间复杂度。
所以严格来说,只有第四种方式符合题目要求,但我们拓宽思路,能多用几种还算不错的方式实现需求,也是有百利而无一害的,大家也不必非要钻这个牛角尖。
另外,从效率上来讲,第四种效率是最高的,经过测试高出前三种方式1-2个数量级。只是在普通的业务代码中,用到异或运算的地方并不多,不太容易想到这种方式,这个就考验大家的基础功底了。
只出现一次的数字 [ LeetCode ]的更多相关文章
- 136.只出现一次的数字 leetcode ^运算符 JavaScript解法
leetcode上的一道题简单题 给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次.找出那个只出现了一次的元素. 说明: 你的算法应该具有线性时间复杂度. 你可以不使用额外空间 ...
- Leetcode 137. 只出现一次的数字 II - 题解
Leetcode 137. 只出现一次的数字 II - 题解 137. Single Number II 在线提交: https://leetcode.com/problems/single-numb ...
- 【LeetCode题解】136_只出现一次的数字
目录 [LeetCode题解]136_只出现一次的数字 描述 方法一:列表操作 思路 Java 实现 Python 实现 方法二:哈希表 思路 Java 实现 Python 实现 方法三:数学运算 思 ...
- LeetCode 260. Single Number III(只出现一次的数字 III)
LeetCode 260. Single Number III(只出现一次的数字 III)
- LeetCode 137. Single Number II(只出现一次的数字 II)
LeetCode 137. Single Number II(只出现一次的数字 II)
- LeetCode 136. Single Number(只出现一次的数字)
LeetCode 136. Single Number(只出现一次的数字)
- 【Leetcode】【简单】【136. 只出现一次的数字】【JavaScript】
题目描述 136. 只出现一次的数字 给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次.找出那个只出现了一次的元素. 说明: 你的算法应该具有线性时间复杂度. 你可以不使用额外 ...
- LeetCode初级算法--数组01:只出现一次的数字
LeetCode初级算法--数组01:只出现一次的数字 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn. ...
- LeetCode:137. 只出现一次的数字 II
LeetCode:137. 只出现一次的数字 II 给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现了三次.找出那个只出现了一次的元素. 说明: 你的算法应该具有线性时间复杂度. ...
随机推荐
- .net core 2.1.3可能引发Could not load file or assembly XXXXX的错误
参考文档: https://github.com/aspnet/Home/issues/3503 写在前面 感觉自己现在干的活离开发越来越远了啊,不过也很好,每天能学到不少东西,中文的,英文的,永远也 ...
- html的背景样式图片
背景图片 如果背景图片小于当前的div的情况下 默认的是将平铺充满元素 background-image 设置背景图片. background-repeat 设置是否及如何重复背景图片. repeat ...
- os模块大全详情
python常用模块目录 一:os模块分类: python os.walk详解 二:os模块大全表 序号 方法 方法 1 os.access(path, mode) 检验权限模式 2 os.chdir ...
- nagios监控安装esxi的服务器(宿主机)
首先,该博文大部分内容来自网络,少部分是自己监控过程中遇到的问题.如果有侵权,请联系告知!!! 现在互联网公司,有能力的都是自己研发监控系统,要么就是zabbix或者小米的监控,还都二次开发等等,可能 ...
- loadrunner--基础2
LR11-03 一.并发测试(n VU) 1.并发测试两个条件 1)脚本中要有 集合点(并发点) 2)控制台中要设置并发策略(选择第一项,所有虚拟用户到达集合点后释放) 集合点: 5个线程,代表5个V ...
- HDU 5207 Greatest Greatest Common Divisor
题目链接: hdu:http://acm.hust.edu.cn/vjudge/problem/visitOriginUrl.action?id=153598 bc(中文):http://bestco ...
- HTML图片标签
<body> <!-- 使用img标签来向网页中引入外部的图片, img标签也是一个自结束标签 属性: src:设置一个外部图片的路径 alt:可以用来设置图片不能显示时,就会显示图 ...
- python接口自动化测试框架实现之字符串插入变量(字符串参数化)
问题: 在做接口自动化测试的时候,请求报文是json串,但是根据项目规则必须转换成字符串,然后在开头拼接“data=” 接口中很多入参值需要进行参数化. 解决方案: 1.Python并没有对在字符串中 ...
- 微信小程序组件 自定义单选
<view class='userperson'> <view class='f30 flexca'>请选择您的注册身份</view> <view class ...
- SQL Server bit数据类型
bit值保存为1/0,1代表true,0代表false读取数据库数据时,可以直接用bool型读取该字段,会直接转换为true/false 数据库表结构 CREATE TABLE [dbo].[BitT ...