转载自:http://blog.csdn.net/qingyang0320/article/details/51603243

针对Spark的RDD,API中有一个aggregate函数,本人理解起来费了很大劲,明白之后,mark一下,供以后参考。

首先,Spark文档中aggregate函数定义如下

def aggregate[U](zeroValue: U)(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U)(implicit arg0: ClassTag[U]): U

Aggregate the elements of each partition, and then the results for all the partitions, using given combine functions and a neutral "zero value". This function can return a different result type, U, than the type of this RDD, T. Thus, we need one operation for merging a T into an U and one operation for merging two U's, as in scala.TraversableOnce. Both of these functions are allowed to modify and return their first argument instead of creating a new U to avoid memory allocation.   seqOp操作会聚合各分区中的元素,然后combOp操作把所有分区的聚合结果再次聚合,两个操作的初始值都是zeroValue.   seqOp的操作是遍历分区中的所有元素(T),第一个T跟zeroValue做操作,结果再作为与第二个T做操作的zeroValue,直到遍历完整个分区。combOp操作是把各分区聚合的结果,再聚合。aggregate函数返回一个跟RDD不同类型的值。因此,需要一个操作seqOp来把分区中的元素T合并成一个U,另外一个操作combOp把所有U聚合。

zeroValue

the initial value for the accumulated result of each partition for the seqOp operator, and also the initial value for the combine results from different partitions for the combOp operator - this will typically be the neutral element (e.g. Nil for list concatenation or 0 for summation)

seqOp

an operator used to accumulate results within a partition

combOp

an associative operator used to combine results from different partitions

举个例子。假如List(1,2,3,4,5,6,7,8,9,10),对List求平均数,使用aggregate可以这样操作。

C:\Windows\System32>scala
Welcome to Scala 2.11.8 (Java HotSpot(TM) Client VM, Java 1.8.0_91).
Type in expressions for evaluation. Or try :help.

scala> val rdd = List(1,2,3,4,5,6,7,8,9)
rdd: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> rdd.par.aggregate((0,0))(

(acc,number) => (acc._1 + number, acc._2 + 1),

(par1,par2) => (par1._1 + par2._1, par1._2 + par2._2)

)
res0: (Int, Int) = (45,9)

scala> res0._1 / res0._2
res1: Int = 5

过程大概这样:

首先,初始值是(0,0),这个值在后面2步会用到。

然后,(acc,number) => (acc._1 + number, acc._2 + 1),number即是函数定义中的T,这里即是List中的元素。所以acc._1 + number, acc._2 + 1的过程如下。

1.   0+1,  0+1

2.  1+2,  1+1

3.  3+3,  2+1

4.  6+4,  3+1

5.  10+5,  4+1

6.  15+6,  5+1

7.  21+7,  6+1

8.  28+8,  7+1

9.  36+9,  8+1

结果即是(45,9)。这里演示的是单线程计算过程,实际Spark执行中是分布式计算,可能会把List分成多个分区,假如3个,p1(1,2,3,4),p2(5,6,7,8),p3(9),经过计算各分区的的结果(10,4),(26,4),(9,1),这样,执行(par1,par2) => (par1._1 + par2._1, par1._2 + par2._2)就是(10+26+9,4+4+1)即(45,9).再求平均值就简单了

Spark RDD中的aggregate函数的更多相关文章

  1. 理解Spark RDD中的aggregate函数(转)

    针对Spark的RDD,API中有一个aggregate函数,本人理解起来费了很大劲,明白之后,mark一下,供以后参考. 首先,Spark文档中aggregate函数定义如下 def aggrega ...

  2. Spark Streaming中的操作函数讲解

    Spark Streaming中的操作函数讲解 根据根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transform ...

  3. spark RDD transformation与action函数整理

    1.创建RDD val lines = sc.parallelize(List("pandas","i like pandas")) 2.加载本地文件到RDD ...

  4. Spark Streaming中的操作函数分析

    根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transformations Window Operations J ...

  5. Spark RDD中Runtime流程解析

    一.Runtime架构图 (1)从Spark  Runtime的角度讲,包括五大核心对象:Master.Worker.Executor.Driver.CoarseGrainedExecutorBack ...

  6. spark RDD编程,scala版本

    1.RDD介绍:     RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动 ...

  7. Spark RDD API详解(一) Map和Reduce

    RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RDD可以简单看成是一个数组.和普通数组的区别是,RDD中的数据是分区存储的,这样不同 ...

  8. Spark RDD Operations(1)

    以上是对应的RDD的各中操作,相对于MaoReduce只有map.reduce两种操作,Spark针对RDD的操作则比较多 ************************************** ...

  9. Spark RDD操作(1)

    https://www.zybuluo.com/jewes/note/35032 RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RD ...

随机推荐

  1. Java中的生产者、消费者问题

    Java中的生产者.消费者问题描述: 生产者-消费者(producer-consumer)问题, 也称作有界缓冲区(bounded-buffer)问题, 两个进程共享一个公共的固定大小的缓冲区(仓库) ...

  2. 新手必备!11个强大的 Visual Studio 调试技巧

    简介 调试是软件开发周期中很重要的一部分.它具有挑战性,同时也很让人疑惑和烦恼.总的来说,对于稍大一点的程序,调试是不可避免的.最近几年,调试工具的发展让很多调试任务变的越来越简单和省时. 这篇文章总 ...

  3. laravel连接多个不同数据库的单例类

    在連接多個不同數據庫時,需要寫多個連接,爲了簡化該操作,可以使用該基類,不同的數據庫只要建立好相對應的類繼承該類,就可以使用ORM模型進行操作了. class singletonInstance { ...

  4. 爬虫学习之-sqlite3

    SQLlte数据类型 SQLite能保存什么样的数据类型 ?? 可以保存空值.整数.浮点数.字符串和blob. 什么是blob ?? 是二进制大对象.例如图片.音乐.zip文件. 什么是游标 ?? 游 ...

  5. GO语言教程(一)Linux( Centos)下Go的安装, 以及HelloWorld

    写在前面: 目前,Go语言已经发布了1.5的版本,已经有不少Go语言相关的书籍和教程了,但是看了一些后,觉得还是应该自己写一套Go语言的教程.给广大学习Go语言的朋友多一种选择.因为,咱写的教程,向来 ...

  6. MySQL 事务 转自菜鸟教程 讲的清晰

    MySQL 事务 MySQL 事务主要用于处理操作量大,复杂度高的数据.比如说,在人员管理系统中,你删除一个人员,你即需要删除人员的基本资料,也要删除和该人员相关的信息,如信箱,文章等等,这样,这些数 ...

  7. larave5.6 引入自定义函数库时,报错不能重复定义

    方法一:使用function_exists判断 方法二:使用命名空间 namespace test; function test(){ echo 'test/test'; } namespace te ...

  8. Mysql的表名/字段名/字段值是否区分大小写

    1.MySQL默认情况下是否区分大小写,使用show Variables like '%table_names'查看lower_case_table_names的值,0代表区分,1代表不区分. 2.m ...

  9. webgl学习笔记二-绘图多点

    写在前面 建议先看下第一篇webgl学习笔记一-绘图单点 第一篇文章,介绍了如何用webgl绘图一个点.接下来本文介绍的是如何绘制多个点.形成一个面. webgl提供了一种很方便的机制,即缓冲区对象, ...

  10. BZOJ 1566 管道取珠(DP)

    求方案数的平方之和.这个看起来很难解决.如果转化为求方案数的有序对的个数.那么就相当于求A和B同时取,最后序列一样的种数. 令dp[i][j][k]表示A在上管道取了i个,下管道取了j个,B在上管道取 ...