「LibreOJ β Round #4」求和
https://loj.ac/problem/528
1 , d =1
μ(d)= (-1)^k , d=p1*p2*p3*^pk pi为素数
0 , d=除以上的其他数
所以题意转化:有多少对数的gcd相同质因子只有1个
考虑容斥原理
令f(x)表示 有多少对数的gcd含有x^2这个因子
可能有一对数的gcd含有多个x^2
那么答案最终呈现 tot-f(x1)+f(x2)- f(x3)+ f(x4)……的形式
容斥系数为miu(x)
所以ans=miu(1)*f(1)+miu(2)*f(2)+miu(3)*f(3)……
f怎么算?
每隔x^2个数中一定有一个能整除x^2
所以f(x)= n/x^2 * m/x^2
#include<cmath>
#include<cstdio>
#include<iostream>
#define N 3200001
#define mod 998244353
using namespace std;
typedef long long LL;
bool vis[N];
int p[N],miu[N],cnt;
void pre()
{
miu[]=;
for(int i=;i<N;i++)
{
if(!vis[i])
{
p[++cnt]=i;
miu[i]=-;
}
for(int j=;j<=cnt;j++)
{
if(i*p[j]>=N) break;
vis[i*p[j]]=true;
if(i%p[j]==) break;
miu[i*p[j]]=-miu[i];
}
}
}
void read(LL &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
}
int main()
{
pre();
LL n,m;
read(n); read(m);
int maxn=min(sqrt(n),sqrt(m));
int ans=;
for(int i=;i<=maxn;i++) ans=(ans+miu[i]*(n/(1ll*i*i)%mod)*(m/(1ll*i*i)%mod)%mod+mod)%mod;
printf("%d",ans);
}
「LibreOJ β Round #4」求和的更多相关文章
- LibreOJ #528. 「LibreOJ β Round #4」求和
二次联通门 : LibreOJ #528. 「LibreOJ β Round #4」求和 /* LibreOJ #528. 「LibreOJ β Round #4」求和 题目要求的是有多少对数满足他们 ...
- LOJ528 「LibreOJ β Round #4」求和
LOJ528 「LibreOJ β Round #4」求和 先按照最常规的思路推一波: \[\begin{aligned} &\sum_{i=1}^n\sum_{j=1}^m\mu^2(\gc ...
- Loj #528. 「LibreOJ β Round #4」求和 (莫比乌斯反演)
题目链接:https://loj.ac/problem/528 题目:给定两个正整数N,M,你需要计算ΣΣu(gcd(i,j))^2 mod 998244353 ,其中i属于[1,N],j属于[1,M ...
- loj#528. 「LibreOJ β Round #4」求和
求:\(\sum_{i=1}^n\sum_{j=1}^m\mu(gcd(i,j))^2\) 化简可得\(\sum_{i=1}^{min(n,m)}{\lfloor \frac{n}{i} \rfloo ...
- loj #547. 「LibreOJ β Round #7」匹配字符串
#547. 「LibreOJ β Round #7」匹配字符串 题目描述 对于一个 01 串(即由字符 0 和 1 组成的字符串)sss,我们称 sss 合法,当且仅当串 sss 的任意一个长度为 ...
- [LOJ#531]「LibreOJ β Round #5」游戏
[LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...
- [LOJ#530]「LibreOJ β Round #5」最小倍数
[LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...
- [LOJ#516]「LibreOJ β Round #2」DP 一般看规律
[LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...
- [LOJ#515]「LibreOJ β Round #2」贪心只能过样例
[LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...
随机推荐
- “我爱淘”第二冲刺阶段Scrum站立会议7
完成任务: 完成学院分类的点击查看书籍功能,可以点击书的条目查看书的详细信息.将登陆界面以及注册发布界面完善了一下修复一些bug. 计划任务: 将书的详细信息进行完善,并且可以点击收藏以及已预订等功能 ...
- FPGA的软核与硬核
硬核 zynq和pynq系列的fpga都是双ARM/Cortex-A9构成,这里的ARM处理器为硬核,Cortex-A9部分为FPGA部分.即整体分为两部分:PS/PL.PS部分为A9处理器部分,PL ...
- 判断字符串中是否存在的几种方案:string.indexof、string.contains、list.contains、list.any几种方式效率对比
我们在做项目时,可能会遇到这样的需求,比如判断,1,2,3,33,22,123, 中是否存在,3,. var str=",1,2,3,33,22,123,"; 一般有几种方式: 1 ...
- (二)MySQL中级篇
1.视图view 视图是一个虚拟表,其内容由查询定义.定义视图的筛选可以来自当前或其它数据库的一个或多个表,或者其它视图. 视图的优点: ①简化了操作,把经常使用的数据定义为视图. ②安全性,用户只能 ...
- 反向代理负载均衡-----nginx
一:集群 1.1:集群的概念 集群是一组相互独立的.通过高速网络互联的计算机,他们构成了一个组,并以单一系统的模式加以管理.一个客户与集群相互作用时,集群像是一个独立的服务器.集群配置是用于提高 ...
- Spring注解原理
一.注解的基本概念和原理及其简单实用 注解(Annotation)提供了一种安全的类似注释的机制,为我们在代码中添加信息提供了一种形式化得方法,使我们可以在稍后某个时刻方便的使用这些数据(通过解析注解 ...
- 使用JMeter录制Web应用测试脚本
环境 操作系统:Windows 7 工具:JMeter.Badboy 1. 使用代理录制Web性能测试脚本 使用代理录制脚本来创建测试计划无疑是一个简便的方法,代理所要完成的工作就是录制发往服务器的请 ...
- centos中apache自用常用额外配置记录(xwamp)
xwamp套件中apache配置,记录下,以免忘记. 配置路径 ${wwwroot_dir}/conf/httpd.conf 配置内容 <ifmodule mod_deflate.c> D ...
- 第154天:canvas基础(一)
一.canvas简介 <canvas> 是 HTML5 新增的,一个可以使用脚本(通常为JavaScript)在其中绘制图像的 HTML 元素.它可以用来制作照片集或者制作简单(也不是 ...
- 【.Net】C# 根据绝对路径获取 带后缀文件名、后缀名、文件名、不带文件名的文件路径
1.c#根据绝对路径获取 带后缀文件名.后缀名.文件名. 1 string str =" F:\test\Default.aspx"; 2 string filename = ...