https://loj.ac/problem/528

1            ,  d =1

μ(d)=   (-1)^k   ,  d=p1*p2*p3*^pk  pi为素数

0            ,  d=除以上的其他数

所以题意转化:有多少对数的gcd相同质因子只有1个

考虑容斥原理

令f(x)表示 有多少对数的gcd含有x^2这个因子

可能有一对数的gcd含有多个x^2

那么答案最终呈现 tot-f(x1)+f(x2)- f(x3)+ f(x4)……的形式

容斥系数为miu(x)

所以ans=miu(1)*f(1)+miu(2)*f(2)+miu(3)*f(3)……

f怎么算?

每隔x^2个数中一定有一个能整除x^2

所以f(x)= n/x^2  *  m/x^2

#include<cmath>
#include<cstdio>
#include<iostream>
#define N 3200001
#define mod 998244353
using namespace std;
typedef long long LL;
bool vis[N];
int p[N],miu[N],cnt;
void pre()
{
miu[]=;
for(int i=;i<N;i++)
{
if(!vis[i])
{
p[++cnt]=i;
miu[i]=-;
}
for(int j=;j<=cnt;j++)
{
if(i*p[j]>=N) break;
vis[i*p[j]]=true;
if(i%p[j]==) break;
miu[i*p[j]]=-miu[i];
}
}
}
void read(LL &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
}
int main()
{
pre();
LL n,m;
read(n); read(m);
int maxn=min(sqrt(n),sqrt(m));
int ans=;
for(int i=;i<=maxn;i++) ans=(ans+miu[i]*(n/(1ll*i*i)%mod)*(m/(1ll*i*i)%mod)%mod+mod)%mod;
printf("%d",ans);
}

「LibreOJ β Round #4」求和的更多相关文章

  1. LibreOJ #528. 「LibreOJ β Round #4」求和

    二次联通门 : LibreOJ #528. 「LibreOJ β Round #4」求和 /* LibreOJ #528. 「LibreOJ β Round #4」求和 题目要求的是有多少对数满足他们 ...

  2. LOJ528 「LibreOJ β Round #4」求和

    LOJ528 「LibreOJ β Round #4」求和 先按照最常规的思路推一波: \[\begin{aligned} &\sum_{i=1}^n\sum_{j=1}^m\mu^2(\gc ...

  3. Loj #528. 「LibreOJ β Round #4」求和 (莫比乌斯反演)

    题目链接:https://loj.ac/problem/528 题目:给定两个正整数N,M,你需要计算ΣΣu(gcd(i,j))^2 mod 998244353 ,其中i属于[1,N],j属于[1,M ...

  4. loj#528. 「LibreOJ β Round #4」求和

    求:\(\sum_{i=1}^n\sum_{j=1}^m\mu(gcd(i,j))^2\) 化简可得\(\sum_{i=1}^{min(n,m)}{\lfloor \frac{n}{i} \rfloo ...

  5. loj #547. 「LibreOJ β Round #7」匹配字符串

    #547. 「LibreOJ β Round #7」匹配字符串   题目描述 对于一个 01 串(即由字符 0 和 1 组成的字符串)sss,我们称 sss 合法,当且仅当串 sss 的任意一个长度为 ...

  6. [LOJ#531]「LibreOJ β Round #5」游戏

    [LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...

  7. [LOJ#530]「LibreOJ β Round #5」最小倍数

    [LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...

  8. [LOJ#516]「LibreOJ β Round #2」DP 一般看规律

    [LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...

  9. [LOJ#515]「LibreOJ β Round #2」贪心只能过样例

    [LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...

随机推荐

  1. 软件工程-东北师大站-第七次作业(PSP)

    1.本周PSP 2.本周进度条 3.本周累计进度图 代码累计折线图 博文字数累计折线图 4.本周PSP饼状图

  2. emmmmmm

    211606342杨艺勇 211606379王熙航 单元测试 对每一个代码块进行测试,返回测试结果并和预期结果进行比对 对源代码进行相应的重构,以适应测试代码的调用,且不影响源代码的正常运行 通过与构 ...

  3. "群英队"电梯演讲

    视频如下: https://imgcache.qq.com/tencentvideo_v1/playerv3/TPout.swf?max_age=86400&v=20161117&vi ...

  4. KNN算法之图像处理二

    1.看了诸多博客,初步得到结论是:KNN不适合做图像分类. 2.如果偏要用此方法进行图像分类,距离计算为:对应的每个像素代表的像素值进行绝对差值计算,最后求和.这就是“图像的距离”

  5. 2018软工实践—Alpha冲刺(2)

    队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 协助前端界面的开发 搭建测试用服务器的环境 完成 ...

  6. 第七周C语言代码

    #ifndef NMN_LIST_H #define NMN_LIST_H   #include <stdio.h>   struct list_head {     struct lis ...

  7. 【leetcode】59.Spiral Matrix II

    Leetcode59 Spiral Matrix II Given an integer n, generate a square matrix filled with elements from 1 ...

  8. window redis php(必须版本>=5.4) 安装

    1.下载redis的win版客户端 下载地址: http://code.google.com/p/servicestack/wiki/RedisWindowsDownload 2.选择32bit,64 ...

  9. CSUOJ1329——一行盒子_湖南省第九届大学生计算机程序设计竞赛

    题目是中文的我就不是说明了,比赛的时候看过题目后队友说是splay来做,细想来省赛不会出这么坑的题目吧. 于是比赛还有一个小时左右把该做的都做完了以后,我们队三个人都来思考这个题目了.不过还好很快我们 ...

  10. MSSQL数据库分页存储过程

    create procedure [dbo].[p_splitpage] ), , , output, output as set nocount on declare @p1 int ,,@rowc ...