PAT 1136 A Delayed Palindrome[简单]
1136 A Delayed Palindrome (20 分)
Consider a positive integer N written in standard notation with k+1 digits ai as ak⋯a1a0 with 0≤ai<10for all i and ak>0. Then N is palindromic if and only if ai=ak−i for all i. Zero is written 0 and is also palindromic by definition.
Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. Such number is called a delayed palindrome. (Quoted from https://en.wikipedia.org/wiki/Palindromic_number )
Given any positive integer, you are supposed to find its paired palindromic number.
Input Specification:
Each input file contains one test case which gives a positive integer no more than 1000 digits.
Output Specification:
For each test case, print line by line the process of finding the palindromic number. The format of each line is the following:
A + B = C
where A is the original number, B is the reversed A, and C is their sum. A starts being the input number, and this process ends until C becomes a palindromic number -- in this case we print in the last line C is a palindromic number.; or if a palindromic number cannot be found in 10 iterations, print Not found in 10 iterations. instead.
Sample Input 1:
97152
Sample Output 1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
Sample Input 2:
196
Sample Output 2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
题目大意:给出一个数,是否回文?否则将其反转然后和原数相加,直到加到第10次未出现或者出现。
#include <iostream>
#include<vector>
#include<queue>
#include<algorithm>
#include<cstdlib>
using namespace std; //但是属于哪一条地铁,怎么去表示呢?
bool pd(string s){
int sz=s.size();
for(int i=;i<sz/;i++){
if(s[i]!=s[sz-i-])
return false;
}
return true;
}
int toNum(string s){
int a=;
for(int i=;i<s.size();i++){
a=a*+(s[i]-'');
}
return a;
}
string toStr(int a){
string s;
while(a!=){
s+=(a%+'');
a/=;
}
reverse(s.begin(),s.end());
return s;
}
int main(){
string s;
cin>>s;
string t=s;
//reverse(s[0],s[0]+s.size());//那个反转函数是啥来着???
//s.reverse();//这个调用不正确
reverse(s.begin(),s.end());//t是第一个数,s是第二个数.
bool flag=false;
int a,b,c;
for(int i=;i<;i++){
if(pd(s)){//如果这个数本来就是答案。
flag=true;break;
}
a=toNum(t);
b=toNum(s);
c=a+b;
cout<<t<<" + "<<s<<" = "<<c<<'\n';
s=toStr(c);
t=s;
reverse(s.begin(),s.end());
}
if(flag){
cout<<t<<" is a palindromic number.";
}else{
cout<<"Not found in 10 iterations.";
}
return ;
}
//本来是这么写的,但是提交只有18分,最后一个测试点过不去:答案错误。
//我明白了,这个的考点是大数相加(1K位),而我却将其转换成int,实在是太不好了。
#include <iostream>
#include<vector>
#include<queue>
#include<algorithm>
#include<cstdlib>
using namespace std; string add(string a){
string b=a;
reverse(b.begin(),b.end());
int jin=,s;
for(int i=a.size()-;i>=;i--){
s=(a[i]-'')+(b[i]-'')+jin;
if(s>=){
s%=;
jin=;
}else jin=;
a[i]=s+'';
}
if(jin==){
a=""+a;
}
return a;
} int main(){
string s;
cin>>s;
string t=s;
//reverse(s[0],s[0]+s.size());//那个反转函数是啥来着???
//s.reverse();//这个调用不正确
reverse(s.begin(),s.end());//t是第一个数,s是第二个数.
bool flag=false;
for(int i=;i<;i++){
if(t==s){//如果这个数本来就是答案。
flag=true;break;
}
cout<<t<<" + "<<s<<" = "<<add(t)<<'\n';
t=add(t);
s=t;
reverse(s.begin(),s.end());
}
if(flag){
cout<<t<<" is a palindromic number.";
}else{
cout<<"Not found in 10 iterations.";
}
return ;
}
//终于正确了,这水题花了我好长时间,哭唧唧!你看清题好吗?1000位的数字就是模拟大数相加啊!!!
PAT 1136 A Delayed Palindrome[简单]的更多相关文章
- PAT 1136 A Delayed Palindrome
1136 A Delayed Palindrome (20 分) Consider a positive integer N written in standard notation with k ...
- pat 1136 A Delayed Palindrome(20 分)
1136 A Delayed Palindrome(20 分) Consider a positive integer N written in standard notation with k+1 ...
- PAT甲级:1136 A Delayed Palindrome (20分)
PAT甲级:1136 A Delayed Palindrome (20分) 题干 Look-and-say sequence is a sequence of integers as the foll ...
- PAT A1136 A Delayed Palindrome (20 分)——回文,大整数
Consider a positive integer N written in standard notation with k+1 digits ai as ak⋯a1a0 ...
- 1136 A Delayed Palindrome (20 分)
Consider a positive integer N written in standard notation with k+1 digits ai as ak⋯a1a0 ...
- 1136 A Delayed Palindrome (20 分)
Consider a positive integer N written in standard notation with k+1 digits ai as ak⋯a1a0 ...
- 1136 A Delayed Palindrome
题意:略. 思路:大整数相加,回文数判断.对首次输入的数也要判断其是否是回文数,故这里用do...while,而不用while. 代码: #include <iostream> #incl ...
- PAT1136:A Delayed Palindrome
1136. A Delayed Palindrome (20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue ...
- A1136. Delayed Palindrome
Consider a positive integer N written in standard notation with k+1 digits ai as ak⋯a1a0 ...
随机推荐
- 扫描线 - UVALive - 6864 Strange Antennas
Strange Antennas Problem's Link: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=87213 M ...
- JQuery操作表单相关使用总结
select下拉列表onChange事件之JQuery实现: JQuery: $(document).ready(function () { $("#selectMenu").bi ...
- 标签响应javascript的href处理[转载]
为了给一个<a />标签绑定javascript,但又不让它跳转链接,大家习惯上用的都是 <a href="javascript:;" onclick=" ...
- 开源 java CMS - FreeCMS2.3 移动app生成栏目数据
原文地址:http://javaz.cn/site/javaz/site_study/info/2015/28230.html 项目地址:http://www.freeteam.cn/ 生成栏目数据 ...
- C语言0长度数组(柔性数组)
0长度数组,又称为柔性数组(flexible array).通经常使用来实现变长数组.常见于TLV(type-length-value)的数据结构中. 在标准 C 和 C++ 中,不同意用 0 长度数 ...
- thinkPHP中phpexcel的导出功能
public function wExcel() { vendor("PHPExcel.PHPExcel"); // Create new PHPExcel object $obj ...
- 《Java并发编程实战》第八章 线程池的使用 读书笔记
一.在任务与运行策略之间的隐性解耦 有些类型的任务须要明白地指定运行策略,包含: . 依赖性任务.依赖关系对运行策略造成约束.须要注意活跃性问题. 要求线程池足够大,确保任务都能放入. . 使用线程封 ...
- MyBitis(iBitis)系列随笔之四:多表(多对一查询操作)
前面几篇博客介绍的都是单表映射的一些操作,然而在我们的实际项目中往往是用到多表映射.至于多表映射的关键要用到mybitis的association来加以实现. 这篇介绍的是多表中 ...
- 如何用ChemDraw中的ChemFinder查询反应过程
ChemFinder是ChemDraw化学绘图软件的重要插件之一,ChemFinder是一个贮存众多化学信息的数据库管理系统,不仅可以用于查询基本化学结构,用户还可以用ChemFinder查询需要的反 ...
- 控制iOS 7中的状态栏
本文转载至:http://blog.csdn.net/pucker/article/details/12112105 苹果终于发布了iOS 7正式版,大批的用户都已经纷纷进行了升级.如果App是由Xc ...