定义

BGF bivariate generating function

形式变量\(z\)对应于下标\(n\),形式变量\(u\)对应于下标\(k\)

BGF就是个二重求和

horizonal GF 和 vertical GF

例子

组合数

horizonal GF
\[W_{n}(u):=\sum_{k=0}^{n}\left(\begin{array}{l}
n \\
k
\end{array}\right) u^{k}=(1+u)^{n}
\]
vertical GF (Ord case)
\[W^{\langle k\rangle}(z)=\sum_{n \geq 0}\left(\begin{array}{l}
n \\
k
\end{array}\right) z^{n}=\frac{z^{k}}{(1-z)^{k+1}}
\]
vertical GF (Exp case)
\[\sum_{n \geq 0}\left(\begin{array}{l}
n \\
k
\end{array}\right) \frac{z^{n}}{n!}=e^zz^k/k!
\]
OBGF

先算行再算列,

\[W(z, u)=\sum_{k, n \geq 0}\left(\begin{array}{l}
n \\
k
\end{array}\right) u^{k} z^{n}=\sum_{n \geq 0}(1+u)^{n} z^{n}=\frac{1}{1-z(1+u)}
\]

先算列再算行

\[W(z, u)=\sum_{k \geq 0} u^{k} \frac{z^{k}}{(1-z)^{k+1}}=\frac{1}{1-z} \frac{1}{1-u \frac{z}{1-z}}=\frac{1}{1-z(1+u)}
\]
EBGF

先算行再算列

\[\widetilde{W}(z, u)=\sum_{k, n}\left(\begin{array}{l}
n \\
k
\end{array}\right) u^{k} \frac{z^{n}}{n !}=\sum(1+u)^{n} \frac{z^{n}}{n !}=e^{z(1+u)}
\]

第一类斯特林数

vertical GF (Exp case)
\[P^{\langle k\rangle}(z):=\sum_{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] \frac{z^{n}}{n !}=\frac{1}{k !}(\mathbb{log}\frac{1}{1-z})^k
\]
EBGF

先算列再算行

\[\begin{aligned}
P(z, u) &:=\sum_{k} P^{\langle k\rangle}(z) u^{k}=\sum_{k} \frac{u^{k}}{k !} L(z)^{k}=e^{u L(z)} \\
&=(1-z)^{-u}
\end{aligned}\\
where\ L(z)=\mathbb{log}\frac{1}{1-z}
\]
间接求horizonal GF
\[\mathbb{expand} \ \ P(z,u)=(1-z)^{-u},\\
P(z,u)=(1-z)^{-u}=\sum_{n \geq 0}\left(\begin{array}{c}
n+u-1 \\
n
\end{array}\right) z^{n}
\]
\[\mathbb{horizonal} \ GF \ \ \ \ P_n(u)=u(u+1)(u+2)...(u+n-1)
\]

BGF bivariate generating function 双变量生成函数的更多相关文章

  1. 【转】母函数(Generating function)详解 — TankyWoo(红色字体为批注)

    母函数(Generating function)详解 - Tanky Woo 在数学中,某个序列的母函数(Generating function,又称生成函数)是一种形式幂级数,其每一项的系数可以提供 ...

  2. 母函数(Generating function)详解

    母函数(Generating function)详解 在数学中,某个序列的母函数(Generating function,又称生成函数)是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息.使用 ...

  3. 矩量母函数(Moment Generating Function,mgf,又称:动差生成函数)

    在统计学中,矩又被称为动差(Moment).矩量母函数(Moment Generating Function,简称mgf)又被称为动差生成函数. 称exp(tξ)的数学期望为随机变量ξ的矩量母函数,记 ...

  4. 《BI那点儿事》双变量的相关分析——相关系数

    例如,“三国人物是否智力越高,政治就越高”,或是“是否武力越高,统率也越高:准备数据分析环境: SELECT * FROM FactSanguo11 WHERE 姓名 IN ( N'荀彧', N'荀攸 ...

  5. JavaScript 中的匿名函数((function() {})();)与变量的作用域

    以前都是直接用前端框架Bootstrap,突然想看看Javascript,发现javascript是个非常有趣的东西,这里把刚碰到的一个小问题的理解做下笔录(废话不多说,上代码). /** * Exa ...

  6. polynomial&generating function学习笔记

    生成函数 多项式 形如$\sum_{i=0}^{n}a_i x^i$的代数式称为n阶多项式 核函数 {ai}的核函数为f(x),它的生成函数为sigma(ai*f(i)*x^i) 生成函数的加减 {a ...

  7. ZOJ 1409 communication system 双变量型的DP

    这个题目一开始不知道如何下手,感觉很像背包,里面有两个变量,一个带宽B,一个价格P,有n个设备,每个设备有k个可选的器材(只需选一个),每个器材都有自己的B和P, n个设备选n个器材,最终,FB=所有 ...

  8. 母函数(Generation Function) 入门 + 模板

    转自:母函数 入门 + 模板  感谢 在数学中,某个序列的母函数(Generating function,又称生成函数)是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息.使用母函数解决问题的 ...

  9. wutianqi 博客 母函数

    母函数(Generating function)详解 — Tanky Woo 在数学中,某个序列的母函数(Generating function,又称生成函数)是一种形式幂级数,其每一项的系数可以提供 ...

  10. 使用方向变换(directional transform)图像分块压缩感知

    论文的思路是先介绍分块压缩感知BCS,然后介绍使用投影和硬阈值方法的迭代投影方法PL,接着将PL与维纳滤波器结合形成SPL(平滑PL),并且介绍了稀疏表示的几种基,提出了两种效果较好的稀疏基:CT与D ...

随机推荐

  1. window.parent.postMessage 解决iframe父子页面域名不一样出现的跨域问题

    window.parent.postMessage 解决iframe父子页面域名不一样出现的跨域问题 内嵌 iframe 页面,一般使用 window.parent 或 window.top 来获取父 ...

  2. Java-Java数据类型对应MySql数据类型

    开发过程中常用的数据类型:   Java Mysql 备注 整型 java.lang.Integer tinyint(m) 1个字节  范围(-128~127)  java.lang.Integer ...

  3. python菜鸟学习: 6. 字典常用方法

    # -*- coding: utf-8 -*-dict1 = {"name": "liyuzhoupan", "age": "22 ...

  4. python菜鸟学习: 5.字符串的基本用法,进度条显示

    # -*- coding: utf-8 -*-import sys,timestr1 = "my name is liyuzhoupan"# 首字母大写print(str1.cap ...

  5. Linux 使用vsftpd服务传输文件

    文件传输协议 FTP是一种在互联网中进行文件传输的协议,基于客户端/服务器模式,默认使用20.21号端口,其中端口20(数据端口)用于进行数据传输,端口21(命令端口)用于接受客户端发出的相关FTP命 ...

  6. 在Unity3D中开发的Ghost Shader

    SwordMaster Ghost Shader 特点 此Shader是顶点片元Shader,由本人手动编写完成 此Shader已经在移动设备真机上进行过测试,可以直接应用到您的项目中 所支持的Uni ...

  7. shell相关基础面试题

    用sed修改test.txt的23行test为tset: sed –i '23s/test/tset/g' test.txt 查看/web.log第25行第三列的内容. sed –n '25p' /w ...

  8. 修改AXI UART D16550 FIFO深度的过程记录

    仅限于AXI UART 16550 v. 2.0,其他版本可能存在差异,经过实际测试,可以将fifo深度从默认的16成功修改为32.128和256.参考了两篇帖子中提到的方法,分别是修改AXI UAR ...

  9. FII-PRX100-D开发板FPGA的烧录和RISC-V 软件代码下载

    1. 生成*.bit文件之前先RESET结果 首先,打开Vivado FII_RISCV_V2.01工程(这里以V2.01版本为例),如图1所示. 图1 FII_RISCV_V2.01工程 要生成相应 ...

  10. url not set

    UrI not set 原因与处理方法 今天下午跑代码时发现,上午能跑的代码下午跑不了了.一直报 Url not set错误. 出现这个问题的主要原因,是因为代码中的@ConfigurationPro ...