洛谷

题意:逆时针给出\(n(n<=10)\)个凸多边形的顶点坐标,求它们交的面积。

学长博客,计算几何知识全面

半平面交问题详细讲解

其他模板题推荐

[ICPC2020 WF] Domes

[CTSC1998]监视摄像机

[ZJOI2008]瞭望塔

[JLOI2013]赛车

还有一些前置知识。两向量\((x_1,y_1),(x_2,y_2)\)的叉乘为\(x_1y_2-x_2y_1\),结果为正说明向量\((x_2,y_2)\)在向量\((x_1,y_1)\)逆时针方向,结果为负则在顺时针方向。求两直线交点的公式如下图所示:

代码与原博客稍有不同。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
inline int read() {
char ch = getchar(); int x = 0, f = 1;
while (ch < '0' || ch>'9') { if (ch == '-') f = -1; ch = getchar(); }
while ('0' <= ch && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }
return x * f;
}
const int N = 1e3 + 10;
const double EPS = 1e-5;
int T, tot;
struct node {//一个点,两个坐标
double x, y;
};
node p[15][55];
node ppx[N];
node operator - (node a, node b) {//两个点相减,得到向量ab
node t;
t.x = a.x - b.x;
t.y = a.y - b.y;
return t;
}
double operator ^ (node a, node b) { return a.x * b.y - a.y * b.x; }
//这里的ab应该是向量,然后求叉乘
struct Line {//一个向量,起点s,终点e
node s, e;
};
Line L[N], que[N];
double getAngle(node a) { return atan2(a.y, a.x); }//这里的a应该是向量
double getAngle(Line a) { return atan2(a.e.y - a.s.y, a.e.x - a.s.x); }//求向量a的arctan值
bool cmp(Line a, Line b) {//对所有向量进行极角排序
double A = getAngle(a);
double B = getAngle(b);
return A < B;
}
node getIntersectPoint(Line a, Line b) {//求两直线交点
double a1 = a.s.y - a.e.y, b1 = a.s.x - a.e.x, c1 = 1.0 * a.s.x * a.e.y - 1.0 * a.e.x * a.s.y;
double a2 = b.s.y - b.e.y, b2 = b.s.x - b.e.x, c2 = 1.0 * b.s.x * b.e.y - 1.0 * b.e.x * b.s.y;
node t;
t.x = (1.0 * c1 * b2 - 1.0 * c2 * b1) / (1.0 * a2 * b1 - 1.0 * a1 * b2);
t.y = (1.0 * c1 * a2 - 1.0 * c2 * a1) / (1.0 * a2 * b1 - 1.0 * a1 * b2);
return t;
}
//判断向量a是否在向量bc交点的右侧
bool onRight(Line a, Line b, Line c) {
node o = getIntersectPoint(b, c);
if (((a.e - a.s) ^ (o - a.s)) < 0) return true;//可以自己画图a.s a.e o三个点
return false;
}
double HalfPlaneIntersection() {
sort(L + 1, L + tot + 1, cmp);
int head = 1, tail = 1;
que[1] = L[1];//构造双端队列
for (int i = 2; i <= tot; i++) {
while (head < tail && onRight(L[i], que[tail], que[tail - 1])) tail--;
while (head < tail && onRight(L[i], que[head], que[head + 1])) head++;
que[++tail] = L[i];
//极角相同的向量,保留靠左的那一个
if (fabs(getAngle(que[tail]) - getAngle(que[tail - 1])) < EPS) {
tail--;
if (((que[tail].e - que[tail].s) ^ (L[i].e - que[tail].s)) > EPS)que[tail] = L[i];
}
}
while (head < tail && onRight(que[head], que[tail], que[tail - 1])) tail--;
while (head < tail && onRight(que[tail], que[head], que[head + 1])) head++;
if (tail - head < 2) return 0;//剩下的直线无法构成多边形
double ans = 0;
int tot_jd = 0;
for (int i = head; i < tail; ++i) {
ppx[++tot_jd] = getIntersectPoint(que[i], que[i + 1]);
}
ppx[++tot_jd] = getIntersectPoint(que[tail], que[head]);
for (int i = 2; i < tot_jd; ++i) {
double x1 = ppx[1].x, y1 = ppx[1].y;
double x2 = ppx[i].x, y2 = ppx[i].y;
double x3 = ppx[i + 1].x, y3 = ppx[i + 1].y;
ans = ans + (x2 - x1) * (y3 - y1) - (y2 - y1) * (x3 - x1);
}
return ans / 2.0;
}
int main() {
int T; cin >> T;
for (int t = 1; t <= T; ++t) {
int n; cin >> n;
for (int i = 1; i <= n; ++i) {
cin >> p[t][i].x;
cin >> p[t][i].y;
}
for (int i = 1; i < n; i++) {
L[++tot].s.x = p[t][i].x;
L[tot].s.y = p[t][i].y;
L[tot].e.x = p[t][i + 1].x;
L[tot].e.y = p[t][i + 1].y;
}
L[++tot].s.x = p[t][n].x;
L[tot].s.y = p[t][n].y;
L[tot].e.x = p[t][1].x;
L[tot].e.y = p[t][1].y;
}
printf("%.3lf\n", HalfPlaneIntersection());
return 0;
}

[CQOI2006]凸多边形 /【模板】半平面交的更多相关文章

  1. BZOJ2618[Cqoi2006]凸多边形——半平面交

    题目描述 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. 输入 第一行有一个整数n,表示凸多边形的个数,以下依次描述各个多边形.第 ...

  2. 【bzoj2618】[Cqoi2006]凸多边形 半平面交

    题目描述 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. 输入 第一行有一个整数n,表示凸多边形的个数,以下依次描述各个多边形.第 ...

  3. bzoj2618[Cqoi2006]凸多边形 半平面交

    这是一道半平面交的裸题,第一次写半平面交,就说一说我对半平面交的理解吧. 所谓半平面交,就是求一大堆二元一次不等式的交集,而每个二元一次不等式的解集都可以看成是在一条直线的上方或下方,联系直线的标准方 ...

  4. POJ3525 半平面交

    题意:求某凸多边形内部离边界最远的点到边界的距离 首先介绍半平面.半平面交的概念: 半平面:对于一条有向直线,它的方向的左手侧就是它所划定的半平面范围.如图所示: 半平面交:多个半平面的交集.有点类似 ...

  5. bzoj 3190 赛车 半平面交

    直接写的裸的半平面交,已经有点背不过模板了... 这题卡精度,要用long double ,esp设1e-20... #include<iostream> #include<cstd ...

  6. poj3335 半平面交

    题意:给出一多边形.判断多边形是否存在一点,使得多边形边界上的所有点都能看见该点. sol:在纸上随手画画就可以找出规律:按逆时针顺序连接所有点.然后找出这些line的半平面交. 题中给出的点已经按顺 ...

  7. POJ 3130 How I Mathematician Wonder What You Are! /POJ 3335 Rotating Scoreboard 初涉半平面交

    题意:逆时针给出N个点,求这个多边形是否有核. 思路:半平面交求多边形是否有核.模板题. 定义: 多边形核:多边形的核可以只是一个点,一条直线,但大多数情况下是一个区域(如果是一个区域则必为 ).核内 ...

  8. bzoj 4445 小凸想跑步 - 半平面交

    题目传送门 vjudge的快速通道 bzoj的快速通道 题目大意 问在一个凸多边形内找一个点,连接这个点和所有顶点,使得与0号顶点,1号顶点构成的三角形是最小的概率. 假设点的位置是$(x, y)$, ...

  9. 【kuangbin专题】计算几何_半平面交

    1.poj3335 Rotating Scoreboard 传送:http://poj.org/problem?id=3335 题意:就是有个球场,球场的形状是个凸多边形,然后观众是坐在多边形的边上的 ...

  10. BZOJ 4445 [Scoi2015]小凸想跑步:半平面交

    传送门 题意 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸 $ n $ 边形,$ n $ 个顶点 $ P_i $ 按照逆时针从 $ 0 $ 至 $ n-1 $ 编号. ...

随机推荐

  1. 【最新最新】mac pro 安装扩展imagick 最新总结

    近期在mac上做相关开发,关于验证码图片如果没装imagick扩展会报 GD with FreeType or ImageMagick PHP extensions are required.等错误 ...

  2. IntelliJ IDEA运行项目的时候提示 Command line is too long 错误

    这时候你需要调整运行项目的配置,将 Configuration 中的 Shorten Command Line 修改为 JAR 就可以了.

  3. vue table刷新单行数据

    1.给el-table加上标记方法 <el-table v-loading="loading" :data="tagList1" @selection-c ...

  4. 浅谈hive

    hive支持sql标准的数据仓库,可以将sql语句转化成mr程序执行.基础分析一般用hive来做,比较复杂的用mr来做数据仓库和数据库的区别    数据仓库:历史数据,面向分析,保证数据的完整性可以允 ...

  5. composer 换源

    #首先把默认的源给禁用掉 composer config -g secure-http false #再修改镜像源 这里我使用阿里的源 composer config -g repo.packagis ...

  6. springmvc引入swagger2

    swagger2 简介 ​ API Developmentfor Everyone. ​ Simplify API development for users, teams, and enterpri ...

  7. linux端口探测

    一.常用命令 1.测试端口是否能通(已有服务) 命令:nc -vz -w 2 10.0.1.161 9999 说明:-v可视化,-z扫描时不发送数据,-w超时几秒,后面跟数字 2.测试端口是否能通(没 ...

  8. python批量将png图片转换为jpg图片

    参考引用链接如下:https://www.freesion.com/article/1866518882

  9. 关于JWT中RSA数据加密协议在.net中应用

    加密协议有哪些 加密协议分为对称加密和非对称加密. 对称加密就是将信息使用一个密钥进行加密,解密时使用同样的密钥,同样的算法进行解密. 非对称加密,又称公开密钥加密,是加密和解密使用不同密钥的算法,广 ...

  10. Linux df -h 显示磁盘空间满,但实际未占用满——问题分析

    问题现象: 遇到一个问题,在系统上,告警提示磁盘空间不够,如下图所示: 问题分析: 1.首先使用 :du  -h  / --max-depth=1 命令查看各个目录的占用空间,试图找到占用较多空间的目 ...