[CQOI2006]凸多边形 /【模板】半平面交
洛谷
题意:逆时针给出\(n(n<=10)\)个凸多边形的顶点坐标,求它们交的面积。
学长博客,计算几何知识全面
半平面交问题详细讲解
其他模板题推荐
[ICPC2020 WF] Domes
[CTSC1998]监视摄像机
[ZJOI2008]瞭望塔
[JLOI2013]赛车
还有一些前置知识。两向量\((x_1,y_1),(x_2,y_2)\)的叉乘为\(x_1y_2-x_2y_1\),结果为正说明向量\((x_2,y_2)\)在向量\((x_1,y_1)\)逆时针方向,结果为负则在顺时针方向。求两直线交点的公式如下图所示:

代码与原博客稍有不同。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
inline int read() {
char ch = getchar(); int x = 0, f = 1;
while (ch < '0' || ch>'9') { if (ch == '-') f = -1; ch = getchar(); }
while ('0' <= ch && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }
return x * f;
}
const int N = 1e3 + 10;
const double EPS = 1e-5;
int T, tot;
struct node {//一个点,两个坐标
double x, y;
};
node p[15][55];
node ppx[N];
node operator - (node a, node b) {//两个点相减,得到向量ab
node t;
t.x = a.x - b.x;
t.y = a.y - b.y;
return t;
}
double operator ^ (node a, node b) { return a.x * b.y - a.y * b.x; }
//这里的ab应该是向量,然后求叉乘
struct Line {//一个向量,起点s,终点e
node s, e;
};
Line L[N], que[N];
double getAngle(node a) { return atan2(a.y, a.x); }//这里的a应该是向量
double getAngle(Line a) { return atan2(a.e.y - a.s.y, a.e.x - a.s.x); }//求向量a的arctan值
bool cmp(Line a, Line b) {//对所有向量进行极角排序
double A = getAngle(a);
double B = getAngle(b);
return A < B;
}
node getIntersectPoint(Line a, Line b) {//求两直线交点
double a1 = a.s.y - a.e.y, b1 = a.s.x - a.e.x, c1 = 1.0 * a.s.x * a.e.y - 1.0 * a.e.x * a.s.y;
double a2 = b.s.y - b.e.y, b2 = b.s.x - b.e.x, c2 = 1.0 * b.s.x * b.e.y - 1.0 * b.e.x * b.s.y;
node t;
t.x = (1.0 * c1 * b2 - 1.0 * c2 * b1) / (1.0 * a2 * b1 - 1.0 * a1 * b2);
t.y = (1.0 * c1 * a2 - 1.0 * c2 * a1) / (1.0 * a2 * b1 - 1.0 * a1 * b2);
return t;
}
//判断向量a是否在向量bc交点的右侧
bool onRight(Line a, Line b, Line c) {
node o = getIntersectPoint(b, c);
if (((a.e - a.s) ^ (o - a.s)) < 0) return true;//可以自己画图a.s a.e o三个点
return false;
}
double HalfPlaneIntersection() {
sort(L + 1, L + tot + 1, cmp);
int head = 1, tail = 1;
que[1] = L[1];//构造双端队列
for (int i = 2; i <= tot; i++) {
while (head < tail && onRight(L[i], que[tail], que[tail - 1])) tail--;
while (head < tail && onRight(L[i], que[head], que[head + 1])) head++;
que[++tail] = L[i];
//极角相同的向量,保留靠左的那一个
if (fabs(getAngle(que[tail]) - getAngle(que[tail - 1])) < EPS) {
tail--;
if (((que[tail].e - que[tail].s) ^ (L[i].e - que[tail].s)) > EPS)que[tail] = L[i];
}
}
while (head < tail && onRight(que[head], que[tail], que[tail - 1])) tail--;
while (head < tail && onRight(que[tail], que[head], que[head + 1])) head++;
if (tail - head < 2) return 0;//剩下的直线无法构成多边形
double ans = 0;
int tot_jd = 0;
for (int i = head; i < tail; ++i) {
ppx[++tot_jd] = getIntersectPoint(que[i], que[i + 1]);
}
ppx[++tot_jd] = getIntersectPoint(que[tail], que[head]);
for (int i = 2; i < tot_jd; ++i) {
double x1 = ppx[1].x, y1 = ppx[1].y;
double x2 = ppx[i].x, y2 = ppx[i].y;
double x3 = ppx[i + 1].x, y3 = ppx[i + 1].y;
ans = ans + (x2 - x1) * (y3 - y1) - (y2 - y1) * (x3 - x1);
}
return ans / 2.0;
}
int main() {
int T; cin >> T;
for (int t = 1; t <= T; ++t) {
int n; cin >> n;
for (int i = 1; i <= n; ++i) {
cin >> p[t][i].x;
cin >> p[t][i].y;
}
for (int i = 1; i < n; i++) {
L[++tot].s.x = p[t][i].x;
L[tot].s.y = p[t][i].y;
L[tot].e.x = p[t][i + 1].x;
L[tot].e.y = p[t][i + 1].y;
}
L[++tot].s.x = p[t][n].x;
L[tot].s.y = p[t][n].y;
L[tot].e.x = p[t][1].x;
L[tot].e.y = p[t][1].y;
}
printf("%.3lf\n", HalfPlaneIntersection());
return 0;
}
[CQOI2006]凸多边形 /【模板】半平面交的更多相关文章
- BZOJ2618[Cqoi2006]凸多边形——半平面交
题目描述 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. 输入 第一行有一个整数n,表示凸多边形的个数,以下依次描述各个多边形.第 ...
- 【bzoj2618】[Cqoi2006]凸多边形 半平面交
题目描述 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. 输入 第一行有一个整数n,表示凸多边形的个数,以下依次描述各个多边形.第 ...
- bzoj2618[Cqoi2006]凸多边形 半平面交
这是一道半平面交的裸题,第一次写半平面交,就说一说我对半平面交的理解吧. 所谓半平面交,就是求一大堆二元一次不等式的交集,而每个二元一次不等式的解集都可以看成是在一条直线的上方或下方,联系直线的标准方 ...
- POJ3525 半平面交
题意:求某凸多边形内部离边界最远的点到边界的距离 首先介绍半平面.半平面交的概念: 半平面:对于一条有向直线,它的方向的左手侧就是它所划定的半平面范围.如图所示: 半平面交:多个半平面的交集.有点类似 ...
- bzoj 3190 赛车 半平面交
直接写的裸的半平面交,已经有点背不过模板了... 这题卡精度,要用long double ,esp设1e-20... #include<iostream> #include<cstd ...
- poj3335 半平面交
题意:给出一多边形.判断多边形是否存在一点,使得多边形边界上的所有点都能看见该点. sol:在纸上随手画画就可以找出规律:按逆时针顺序连接所有点.然后找出这些line的半平面交. 题中给出的点已经按顺 ...
- POJ 3130 How I Mathematician Wonder What You Are! /POJ 3335 Rotating Scoreboard 初涉半平面交
题意:逆时针给出N个点,求这个多边形是否有核. 思路:半平面交求多边形是否有核.模板题. 定义: 多边形核:多边形的核可以只是一个点,一条直线,但大多数情况下是一个区域(如果是一个区域则必为 ).核内 ...
- bzoj 4445 小凸想跑步 - 半平面交
题目传送门 vjudge的快速通道 bzoj的快速通道 题目大意 问在一个凸多边形内找一个点,连接这个点和所有顶点,使得与0号顶点,1号顶点构成的三角形是最小的概率. 假设点的位置是$(x, y)$, ...
- 【kuangbin专题】计算几何_半平面交
1.poj3335 Rotating Scoreboard 传送:http://poj.org/problem?id=3335 题意:就是有个球场,球场的形状是个凸多边形,然后观众是坐在多边形的边上的 ...
- BZOJ 4445 [Scoi2015]小凸想跑步:半平面交
传送门 题意 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸 $ n $ 边形,$ n $ 个顶点 $ P_i $ 按照逆时针从 $ 0 $ 至 $ n-1 $ 编号. ...
随机推荐
- LeetCode-807 保持城市天际线
来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/max-increase-to-keep-city-skyline 题目描述 在二维数组grid ...
- freeRTOS移植成功
今天来学习如何移植freeRTOS 也算是走了很多的坑,总算是把系统跑起来了 相关的教程网上也有比较详细的,本文主要说说自己踩的坑 一些汇编文件报错的问题 这个问题的原因是因为网上大部分的移植说明都是 ...
- DRF过滤Filtering
过滤Filtering 对于列表数据可能需要根据字段进行过滤,我们可以通过添加django-filter扩展来增强支持. pip install django-filter 在配置文件中增加过滤后端的 ...
- 上传图片到Mongo数据库;从Mongo数据库下载图片显示到前端
/** * 上传一个图片文件,保存到mongo数据库中 * @param doc * @param parent 文件所在的目录 * @param request * @return */ @Post ...
- uniapp - 设置代理
uniapp - 设置代理 HbuilderX 找到 manifest.json 文件,点击源码视图 "h5" : { "title" : "案件要素 ...
- docker 部署mongodb 并建立用户和授权数据库
docker pull mongo:4.4.8 (拉取镜像) docker run --name mongo -v /data/mongo-data:/data/db -p 27018:27017 - ...
- 使用.Net工具安装某种程序
使用.Net开发的一个程序,安装时需要使用.net的工具. Emmm... 好长时间不用,有点忘了,偶尔翻到,记录一下 @echo off setlocal chcp 65001 set U_PATH ...
- PS设计非常漂亮酷炫的金色字体效果
方法/步骤 1.在PS里面新建一个黑色背景 2.在图层上 写上比较粗一点的字. 3.鼠标右击图层,选择混合模式,进行调整. 选择颜色叠加,注意颜色是深黄色. 4.转移到混合模式里面的渐变叠加,渐变的颜 ...
- 爬B站并保存成csv文件。提供数据
"""b站排行榜爬虫(scrapy)https://www.bilibili.com/ranking#!/all/0/0/7/爬取编号,标题,url,综合评分,播放量,评 ...
- CompletableFuture使用方法的详细说明
异步执行一个任务时,我们一般是使用自定义的线程池Executor去创建执行的.如果不需要有返回值, 任务实现Runnable接口:如果需要有返回值,任务实现Callable接口,调用Executor的 ...