CF375E Red and Black Tree(线性规划)

Luogu

题解时间

很明显有一个略显复杂的 $ n^3 $ dp,但不在今天讨论范围内。

考虑一些更简单的方法。

设有 $ m $ 个点为黑,转化成线性规划问题,很明显有

\[minimum:\sum\limits_{i} ( 1 - col_{i} ) x_{i}
\]
\[\sum\limits_{ dis(i,j) \le lim } x_{j} \ge 1
\]
\[\sum\limits_{i} x_{i} =m
\]

最后的一个等式转化成两个不等式,之后将整个线性规划利用对偶原理转化成标准型直接单纯形法求解即可。

毫无疑问最终结果不会有 $ x_{i} > 1 $ ,而对于是否可能出现小数,很明显不会影响最终结果。

#include<bits/stdc++.h>
using namespace std;
typedef long long lint;
struct pat{int x,y;pat(int x=0,int y=0):x(x),y(y){}bool operator<(const pat &p)const{return x==p.x?y<p.y:x<p.x;}};
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+(ch-'0');ch=getchar();}
tar=ret*f;
}
template<typename TP,typename... Args>inline void read(TP& t,Args&... args){read(t),read(args...);}
namespace RKK
{
const int N=511;
const double eps=1e-8,inf=1e18;int cz(const double &a){return fabs(a)<=eps?0:(a>eps?1:-1);}
struct sumireko{int to,ne,w;}e[N<<1];int he[N],ecnt;
void addline(int f,int t,int w){e[++ecnt].to=t,e[ecnt].w=w,e[ecnt].ne=he[f],he[f]=ecnt;}
namespace lisp
{
int n,m,id[N<<1];double a[N][N];
void pivot(int l,int e)
{
swap(id[m+l],id[e]);
double k=-a[l][e];a[l][e]=-1;
for(int j=0;j<=m;j++) a[l][j]/=k;
for(int i=0;i<=n;i++)if(i!=l&&cz(a[i][e]))
{
k=a[i][e],a[i][e]=0;
for(int j=0;j<=m;j++) a[i][j]+=k*a[l][j];
}
}
int init()
{
for(int i=1;i<=m+n;i++) id[i]=i;
while(1)
{
int l=0,e=0;
for(int i=1;i<=n;i++)if(cz(a[i][0])<0&&(!l||rand()&1)) l=i;
if(!l) break;
for(int j=1;j<=m;j++)if(cz(a[l][j])>0&&(!e||rand()&1)) e=j;
if(!e) return -1;//no solution
pivot(l,e);
}return 0;
}
int simplex()
{
while(1)
{
int l=0,e=0;double mi=inf;
for(int j=1;j<=m;j++)if(cz(a[0][j])>0&&(!e||rand()&1)) e=j;
if(!e) break;
for(int i=1;i<=n;i++)if(cz(a[i][e])<0&&(!l||-a[i][0]/a[i][e]<mi)) l=i,mi=-a[i][0]/a[i][e];
if(!l) return -1;//unbounded
pivot(l,e);
}return 0;
}
void work()
{
if(init()==-1) return (void)(puts("-1"));
if(simplex()==-1) return (void)(puts("-1"));
printf("%.0lf\n",a[0][0]);
}
}
int n,m,lim,col[N];
void dfs(int x,int f,int sp,int dis)
{
if(dis>lim) return;
lisp::a[x][sp]=-1;
for(int i=he[x],t=e[i].to;i;i=e[i].ne,t=e[i].to)if(t!=f) dfs(t,x,sp,dis+e[i].w);
}
int main()
{
read(n,lim);for(int i=1;i<=n;i++) read(col[i]),m+=col[i];
for(int i=2,x,y,w;i<=n;i++) read(x,y,w),addline(x,y,w),addline(y,x,w);
lisp::n=n,lisp::m=n+2;
for(int i=1;i<=n;i++) lisp::a[i][0]=!col[i],lisp::a[0][i]=1;lisp::a[0][n+1]=m,lisp::a[0][n+2]=-m;
for(int i=1;i<=n;i++) lisp::a[i][n+1]=-1,lisp::a[i][n+2]=1;
for(int i=1;i<=n;i++) dfs(i,0,i,0);
lisp::work();
return 0;
}
}
int main(){return RKK::main();}

CF375E Red and Black Tree(线性规划)的更多相关文章

  1. [CC-BLREDSET]Black and Red vertices of Tree

    [CC-BLREDSET]Black and Red vertices of Tree 题目大意: 有一棵\(n(\sum n\le10^6)\)个结点的树,每个结点有一种颜色(红色.黑色.白色).删 ...

  2. BNUOJ 26229 Red/Blue Spanning Tree

    Red/Blue Spanning Tree Time Limit: 2000ms Memory Limit: 131072KB This problem will be judged on HDU. ...

  3. 「CF375E」Red and Black Tree「树形DP」

    题意 给定一个结点颜色红或黑的树,问最少进行多少次交换黑.红结点使得每个红结点离最近的黑结点距离\(\leq x\). \(1\leq n \leq 500, 1 \leq x \leq 10^9\) ...

  4. [Codeforces375E]Red and Black Tree

    Problem 给定一棵有边权的树.树上每个点是黑或白的.黑白点能两两交换. 求符合任意一个白点到最近黑点的距离小于等于x时,黑白点交换次数最少为多少. Solution 明显是一题树形DP.我们先跑 ...

  5. [CodeForces-375E]Red and Black Tree

    题目大意: 给你一棵带边权的树,每个结点可能是红色或者黑色,你可以交换若干个点对使得任意一个红点到达与其最近的黑点的距离小于等于m. 思路: 动态规划. f[i][j][k]表示以i为根的子树中,连向 ...

  6. 设计模式 --深入理解javascript

    /* 一.单例模式 */ var Universe; (function () { var instance; Universe = function Universe() { if (instanc ...

  7. 【转】并查集&MST题集

    转自:http://blog.csdn.net/shahdza/article/details/7779230 [HDU]1213 How Many Tables 基础并查集★1272 小希的迷宫 基 ...

  8. RH133读书笔记(11)-Lab 11 System Rescue and Troubleshooting

    Lab 11 System Rescue and Troubleshooting Goal: To build skills in system rescue procedures. Estimate ...

  9. 解读Linux命令格式(转)

    解读Linux命令格式   环境 Linux HA5-139JK 2.6.18-164.el5 #1 SMP Tue Aug 18 15:51:48 EDT 2009 x86_64 x86_64 x8 ...

随机推荐

  1. Solution -「CF 232E」Quick Tortoise

    \(\mathcal{Description}\)   Link.   在一张 \(n\times m\) 的网格图中有空格 . 和障碍格 #,\(q\) 次询问,每次查询从 \((x_1,y_1)\ ...

  2. Unable to register node “xxx“ with API server: Unauthorized

    k8s二进制部署环境出现kubelet认证不了节点 出现这个情况的时候,第一个反应是先看apiserver证书是不是过期了 # 查看apiserver的service文件存储路径 systemctl ...

  3. CentOS 7 下编译安装 4.14 内核

    文章目录 rpm升级 编译升级 升级前 下载安装包 编译内核 更新启动引导 修改默认启动内核 重启之后验证 rpm升级 # rpm的方式升级内核 1.载入内核公钥 [root@localhost ~] ...

  4. Redis 忽然变慢了如何排查并解决?

    Redis 通常是我们业务系统中一个重要的组件,比如:缓存.账号登录信息.排行榜等. 一旦 Redis 请求延迟增加,可能就会导致业务系统"雪崩". 我在单身红娘婚恋类型互联网公司 ...

  5. SpringBoot中请求参数 @MatrixVariable 矩阵变量

    一.矩阵变量请求格式 /users;id=1,uname=jack 二.SpringBoot开启矩阵请求 首先查看springboot源码关于矩阵部分的内容 在 WebMvcAutoConfigura ...

  6. Acme-https证书申请

    Linux下使用acme.sh 配置https 免费证书 简单来说acme.sh 实现了 acme 协议, 可以从 let's encrypt 生成免费的证书. acme.sh 有以下特点: 一个纯粹 ...

  7. 「BUAA OO Pre」 Pre 2总结回顾概览

    「BUAA OO Pre」 Pre 2总结回顾概览 目录 「BUAA OO Pre」 Pre 2总结回顾概览 Part 0 前言 写作背景 定位 您可以在这里期望获得 您在这里无法期望获得 对读者前置 ...

  8. 答疑记录:jmeter从返回的html中提取指定内容

    返回的html(截取部分),要求从中提取:2022-02-22 13:46:15 <!-- 前面省略557行 --> <td>2022-02-22</td> < ...

  9. 前端提升生产力系列三(vant3 vue3 移动端H5下拉刷新,上拉加载组件的封装)

    | 在日常的移动端开发中,经常会遇到列表的展示,以及数据量变多的情况下还会有上拉和下拉的操作.进入新公司后发现移动端好多列表,但是在看代码的时候发现,每个列表都是单独的代码,没有任何的封装,都是通过v ...

  10. 如何用zabbix监控mysql多实例

    agent上起了多了 mysql实例,占用不同的端口,agent 仅在初始状况下,塞入脚本和 键配置,然后重启. 以后维护的时候(mysql端口变动),要做到 不能 动agent,力争 只在 web端 ...